Recent progress in the Kaehler minimal model program

Christopher Hacon

University of Utah

June, 2025

MMP conjecture

 We would like to generalize the results from the mmp for projective varieties to the context of Kähler varieties.

Conjecture (Kähler BCHM)

Let (X, ω) be a compact Kähler variety, (X, B) be a klt pair.

- If $K_X + B$ is big or $K_X + B$ is pseudo-effective and B is big, then (X, B) has a good minimal model.
- ② If $K_X + B$ is not pseudo-effective, then (X, B) has a Mori fiber space.
 - We begin by recalling the various definitions in the analytic context.

Positivity

- Since divisors can be rare on Kähler varieties, it is convenient to define nef, big, pseff, Kähler, etc. for classes $\alpha \in H^{1,1}_{\mathrm{BC}}(X)$. This is the space generated by locally $\partial \bar{\partial}$ exact (1,1) forms on X (think of these as the analog of \mathbb{R} -Cartier divisors).
- ω is a Kähler form if it is > 0. $\alpha \in H^{1,1}_{\mathrm{BC}}(X)$ is Kähler if $\int_Y \alpha^k \wedge \omega^{\dim Y k} > 0$ for any subvariety $Y \subset X$.
- The nef cone is the closure of the Kähler cone so $\int_Y \alpha^k \wedge \omega^{\dim Y k} \ge 0$ for any subvariety $Y \subset X$.
- Note that even K_X is not a globally defined divisor. It is a reflexive rank 1 sheaf and if it is \mathbb{Q} -Cartier, then $c_1(K_X) \in H^{1,1}_{\mathrm{BC}}(X)$.
- $\alpha \in H^{1,1}_{\mathrm{BC}}(X)$ is big/pseudo-effective if it is represented by a Kähler/positive current.

Positivity

- We let $N^1(X) = H^{1,1}_{\mathrm{BC}}(X)$ and $N_1(X) = (N^1(X))^{\vee}$.
- $\rho(X) := \dim H^{1,1}_{\mathrm{BC}}(X)$.
- $\mathcal{K} \subset H^{1,1}_{\mathrm{BC}}(X)$ is the Kähler cone and $\overline{\mathcal{K}} \subset H^{1,1}_{\mathrm{BC}}(X)$ is the nef cone
- Since curves are rare on Kähler varieties, it is convenient to think of $\operatorname{NA}(X) = \mathcal{K}^{\vee} \subset \mathcal{N}_1(X)$ the cone of positive classes generated by $\int_{Y} \omega^{\dim Y 1} \wedge \cdots$.
- We have $NE(X) = < \int_C ... > \subset NA(X)$.

Generalized pairs

- It is convenient to work with generalized pairs $(X, B + \beta)$.
- Traditionally $oldsymbol{eta}$ is a nef b- \mathbb{R} -divisor. For us $oldsymbol{eta}$ is a nef b-(1,1)-form.
- This means that for a resolution $\nu: X' \to X$, $\beta_{X'} \in H^{1,1}_{\mathrm{BC}}(X')$ is nef and if $p: W \to X'$, $q: W \to X''$, then $\beta_{X''} = q_*(p^*\beta_{X'})$.
- By definition of gen pair,

$$\nu_*(K_{X'}+B'+eta_{X'})=K_X+B+eta_X\in H^{1,1}_{\mathrm{BC}}(X)$$

where β is b-nef and descends to X'.

- gklt/glc if B' snc and the coefficients of B' are $< 1/\le 1$.
- Define $a_E(X, B, \beta) = -\text{mult}_E(B')$.

Minimal model/Mori fiber spaces

- We say that $(X, B + \beta)$ is a minimal model if $K_X + B + \beta_X$ is nef.
- $(X, B + \beta)$ is a good minimal model if there exists a morphism $f: X \to Z$ and a Kähler form ω_Z s.t. $K_X + B + \beta_X \equiv f^* \omega_Z$
- $(X, B + \beta) \to Z$ is a Mori fiber space if $\rho(X/Z) = 1$, $\dim X > \dim Z$, $-(K_X + B + \beta_X)$ is relatively Kähler.

Conjecture (Generalized Kähler BCHM)

Let (X, ω) be a compact Kähler variety, $(X, B + \beta)$ be a gklt pair.

- If $K_X + B + \beta$ is big or $K_X + B + \beta$ is pseudo-effective and $B + \beta$ is big, then $(X, B + \beta)$ has a good minimal model $X \dashrightarrow X'$.
- 2 If $K_X + B + \beta$ is not pseudo-effective, then $(X, B + \beta)$ has a Mori fiber space $X \dashrightarrow X'$.
- $X \dashrightarrow X'$ birational cont. $a_E(X, B + \beta) \le a_E(X, B' + \beta)$

Projective MMP

• Notice that the Kähler mmp is more general than [BCHM] even for projective varieties. (However, the traditional case $\beta = N$ follows from [BCHM].)

Theorem (Hacon-Das)

Let X be a projective variety and $(X, B + \beta)$ a gklt pair, then Kähler BCHM holds for $(X, B + \beta)$.

- The key observation is that if X is projective, then $\beta' \equiv N' + \delta$ where N' is a nef \mathbb{R} -divisor and $\int_C \delta = 0$ for any curve $C \subset X'$.
- In order to establish the g-Kähler BCHM conjecture and to run the MMP we will need the cone theorem, the contraction theorem, the existence of flips, and the termination of flips.

Cone Theorem

Theorem (Hacon-Paun)

Let $(X, B + \beta)$ be a gklt pair with $B + \beta_X$ big, then

$$\operatorname{NA}(X) = \operatorname{NA}(X)_{(K_X + B + \beta_X)_{\geq 0}} + \sum_{i \in I} \mathbb{R}^+[\Gamma_i]$$

where $\{\Gamma_i\}$ is a finite set of rational curves with

$$0 < -(K_X + B + \beta_X) \cdot \Gamma_i \le 2 \dim X.$$

- If X contains no rational curves then $K_X + B + \beta_X$ is nef.
- I will discuss the proof later.

Existence of flips

Theorem (Das-Hacon)

Let $(X, B + \beta_X)$ be a gklt pair, $f : X \to Z$ be a flipping contraction, then the flip $f^+ : X^+ \to Z$ exists.

• Note $\rho(X/Z) = \rho(X^+/Z) = 1$, $-(K_X + B + \beta_X)$ and $K_{X^+} + B^+ + \beta_{X^+}$ are Kähler over Z. Note that f is birational, hence Moishezon and we have

Theorem (Fujino, Das-Hacon-Paun)

The results of [BCHM] hold for projective morphisms.

• This theorem holds for traditional generalized pairs (X, B + N) and we reduce to this case.

Termination of flips

- Termination of flips for klt projective pairs is known to be a very difficult problem in dimension ≥ 4.
- Termination of flips for g-klt pairs is even harder (eg. β_X is not NQC).
- So the idea is to run a minimal model program with scaling $(X, B + \beta_X + t\omega)$ and then we obtain a sequence of flips and div contractions $X \dashrightarrow X_1 \dashrightarrow X_2 \dashrightarrow \dots$
- We have a sequence $\lambda_1 > \lambda_2 > ... \geq 0$ such that $X \dashrightarrow X_i$ is a min model for $(X, B + \beta_X + t\omega_X)$ for $\lambda_{i-1} \geq t \geq \lambda_i$.
- We then use finiteness of minimal models (when $B + \beta_X$ is big) to show termination.
- This works in dim X = 3 (Das-Hacon-Yanez) and hopefully in all dimensions.

Transcendental base point free conjecture

Conjecture (Transcendental base point free conjecture)

If $(X, B + \beta)$ is gklt and $\alpha = K_X + B + \beta_X$ is nef and big and generalized klt, then α is semiample i.e. there is a morphism $f: X \to Z$ such that $\alpha \equiv f^*\alpha_Z$ where α_Z is Kähler on Z.

- As mentioned above this holds for projective varieties.
- We can reduce to the case where (X,B) is klt and β_X is Kähler, and this is the traditional setting of the Kähler Ricci flow.
- For completeness we mention the following.

Conjecture (Abundance)

If $(X, B + \beta)$ is klt and $K_X + B + \beta_X$ is nef, then it is semiample.

Current Status

- Everything works for projective pairs (Fujino, Das-Hacon-Paun, Das-Hacon).
- Everything works in dimension 3 (Campana, Horing, Peternell, Das, Hacon, Ou, Yanez).
- There is substantial progress in dimension 4: [Das-Hacon-Paun 2023] for (X,B) klt 4-fold such that $K_X+B\equiv D\geq 0$ and [Das-Hacon in progress] "weak mmp" for (X,B) klt 4-fold.
- There is a clear approach in higher dimension (but many technical issues.....so....)
- In what follows I will describe the main ingredients for a proof of the Cone Theorem and an approach to the Transcendental Base Point Free Conjecture.

Ou's result + applications

Theorem (BDPP Conjecture [Ou 2025])

Let X be a Kähler variety, then X is uniruled iff K_X is not pseudo-effective.

- In our setting $B + \beta_X$ is big so if $K_X + B + \beta_X$ is not big, then K_X is not pseudo-effective.
- We then have a non-trivial MRC $f: X \longrightarrow Z$.
- By [Claudon-Horing 2024] f is Moishezon.
- Replacing X by a resolution, we may assume that f is a projective morphism and we run a relative mmp $X \longrightarrow X'/Z$.
- If $K_X + B + \beta_X$ is not pseff over Z, then this ends with a $(K_X + B + \beta_X)$ -MFS $g: X' \to Z'$.

Ou's result + applications

- If $K_X + B + \beta_X$ is pseff over Z, then this ends with a $(K_X + B + \beta_X)$ -trivial fibration $g: X' \to Z'$.
- By the canonical bundle formula [Hacon-Paun 2024] we have $K_{X'}+B'+eta_{X'}=g^*(K_{Z'}+B_{Z'}+\gamma_{Z'})$ where $(Z',B_{Z'}+\gamma)$ is a generalized pair and $B_{Z'}+\gamma_{Z'}$ is big.
- We conclude by induction on the dimension.

$\mathsf{Theorem}$

If $(X, B + \beta)$ is gklt and $K_X + B + \beta_X$ is not pseff, then there is a "MFS" $X \dashrightarrow X' \to Z$.

- So the interesting case is when $K_X + B + \beta_X$ is big.
- We focus on $\alpha = K_X + B + \beta_X$ big and nef but not Kähler (eg running the mmp with scaling).
- For simplicity consider $\alpha = K_X + B + \omega$ where ω is Kähler.

Null loci

Theorem (Collins-Tosatti, Hacon-Paun)

If α is nef and big, then $\operatorname{Null}(\alpha) := \bigcup \{V | \int_V \alpha^d = 0\}$ is a closed analytic subset with no isolated points and there is a representative $\gamma \equiv \alpha$ with nice sings and $E_{nK}(\gamma) = \operatorname{Null}(\alpha)$.

- The idea is that if $\gamma \in [\alpha]$ is a Kähler current with minimal singularities, then $E_{nK}(\gamma) \supset \text{Null}(\alpha)$.
- If V is a max component of $E_{nK}(\gamma)$ not contained in $\mathrm{Null}(\alpha)$, then $\alpha|_V$ is big (as $\int_V \alpha^d > 0$) and so there is a (1,1) form $\psi_V \equiv \alpha|_V$ with $E_{nK}(\psi_V)$ strictly contained in V.
- We then extend ψ_V to ψ_U on a neighborhood U of V and define γ' by taking the max of ψ_U and γ near V.
- The resulting $\gamma' \equiv \gamma$ has strictly smaller non-Kähler locus.

On the cone theorem

Theorem (Cao-Horing, Hacon-Paun)

If (X, ω) is Kähler, $(X, B + \beta)$ is gklt such that $\alpha = K_X + B + \beta_X + \omega$ is nef, then there is a α -trivial rational curve C such that $0 > (K_X + B + \beta_X) \cdot C = \omega \cdot C \ge -2 \dim X$.

- C then generates a negative extremal ray.....
- The idea is as follows.
- If α is not big, then K_X is not pseff and so we apply Ou's result on the BDPP Conjecture.

On the cone theorem

- If α is big, then we pick $\gamma \equiv \alpha$ such that $E_{nK}(\gamma) = \text{Null}(\alpha)$.
- We pick a top dimen'l component V of $E_{nK}(\gamma)$, and λ the log canonical threshold of $(X, B + \beta; \gamma)$ at general points of V.
- Thus $(X, B + \beta + \lambda \gamma)$ is properly log canonical at general points of V.
- By a subadjunction result of Hacon-Paun, we have $B_V \ge 0$, γ_V nef b-(1,1) form s.t. $B_V + \gamma_V$ big and

$$((1+\lambda)\alpha)|_{V} = (K_X + B + \beta + \lambda\gamma)|_{V} = K_V + B_V + \gamma_V$$

• Thus K_V is not pseudo-effective and by the Ou's result on the BDPP Conjecture, V is covered by rational curves \square

- Next we illustrate an approach to the Transcendental BPF Conjecture (Highly speculative and incomplete!).
- Suppose that $(X, B + \beta)$ is gklt, $\alpha = K_X + B + \beta_X$ is nef and $B + \beta_X$ is big. We aim to define $g : X \to Z$ such that $\alpha = g^* \omega_Z$ where ω_Z is Kähler.
- If α is not big, then K_X is not PSEF and we consider the MRC X --→ Z. As mentioned above, we plan to proceed by induction on the dimension.
- If α is big then $N = \text{Null}(\alpha) = E_{nK}(\gamma)$ is an analytic subset where $\gamma \equiv \alpha$ is a Kähler current.
- Since α is Kähler outside N, then the corresponding contraction $g: X \to Z$ should be the identity on $X \setminus N$.
- Our approach is divided in 3 steps.

- Step 1. Define $f|_{N}: N \to W$.
- We let λ_i be the jumping numbers for $(X, B + \beta + t\gamma)$ and $V_i = \text{Nklt}(X, B + \beta_X + \lambda_i\gamma)$ (with reduced structure).
- $(1 + \lambda_1)\alpha|_{V_1} = (K_X + B + \beta + \lambda_1\gamma)|_{V_1} = K_{V_1} + B_{V_1} + \eta_{V_1}$ is a gklt pair, η_{V_1} is big and so $\alpha|_{V_1}$ is semi-ample by induction on the dimension.
- In particular $f_1:V_1\to W_1$ is defined.
- Suppose that $f_k: V_k \to W_k$ is defined (contracting α -trivial curves), and $V_{k+1} = V_k \cup V'$.
- $(1+\lambda_{k+1})\alpha|_{V'}\equiv (K_X+B+\beta+\lambda_{k+1}\gamma)|_{V'}=K_{V'}+B_{V'}+\eta_{V'}$ is a g-pair and $\mathrm{nklt}(V',B_{V'}+\eta_{V'})\subset V_k$ so that $\alpha|_{V'\cap V_k}$ is semi-ample.
- By induction on the dimension we obtain $f': V' \to W'$ and gluing this along $V' \cap V_k$ we get $f_{k+1}: V_{k+1} \to W_{k+1}$.

- Step 2. Replacing $(X, B + \beta_X)$ by a log resolution, we may assume that $N = \text{Null}(\alpha) = \text{Nklt}(K_X + B + \beta_X + \lambda \eta)$ for $\lambda \gg 0$ is a divisor.
- Assume for simplicity that $B \ge 0$, β_X is nef, $\gamma = F + \omega$ where ω Kähler, F snc div supported on N.
- We will define $\tilde{f}_k: \tilde{V}_k \to \tilde{W}_k$ where $\tilde{V}_k = |B + \lambda_k F|$.
- We get short exact sequences

$$0 \to \mathcal{O}_{V'}(-\lfloor B + \lambda_k F \rfloor) \to \mathcal{O}_{\tilde{V}_{k+1}} \to \mathcal{O}_{\tilde{V}_k} \to 0$$

- Since $\gamma \equiv_f 0$, we have $(-|B + \lambda_k F|)|_{V'} \equiv_f$ $(K_X + V' + \{B + \lambda_k F\} + \beta_X + \lambda_k \omega)|_{V'} = K_{V'} + \beta_{V'} + \beta_{V'}$
- So $f|_{V'}$ is proj, and by Kawamata-Viehweg vanishing $R^1 f_* \mathcal{O}_{V'}(-|B + \lambda_k F|) = 0$
- Thus $f_*\mathcal{O}_{\tilde{V}_{k+1}} \to f_*\mathcal{O}_{\tilde{V}_k}$ is surjective.
- Thus f extends to arbitrary thickenings of N.

- **Step 3.** Extending *f* to *X*.
- Since $\gamma = F + \omega$ is f-trivial, $-F|_{\text{Supp}F}$ is relatively ample.
- For $k \gg 0$ sufficiently divisible, we will have that
 - \bullet A := kF is a Cartier divisor,
 - \bigcirc f extends to A,

 - **4** $R^i f_* \mathcal{O}_A(-jA) = 0$ for all i > 0, j > 0.
- By [Artin, Fujiki] f extends to $g: X \to Z$ where $g|_{X \setminus A} = \mathrm{id}_{X \setminus A}$ and $g|_A = f$.
- This approach works in dim 3, but several technical difficulties must be dealt with in dim \geq 4.

