Uniruled compact Kähler manifolds

Wenhao Ou

Kähler manifolds

- A Kähler manifold is a complex manifold X endowed with a Kähler form ω , i.e. a \mathcal{C}^{∞} closed positive real (1,1)-form.
- The projective space \mathbb{P}^N is a Kähler manifold. There is a standard Kähler form on it, which is called the Fubini-Study form.
- Every submanifold of a Kähler manifold is a Kähler manifold.
 More generally, we can define Kähler varieties (after Grauert 1965).
 They are possibly singular complex analytic varieties endowed with a Kähler form. In particular, every projective variety is Kähler.
- There are compact Kähler manifolds X, such that any bimeromorphic model of X cannot be approximated by projective manifolds (Voisin 2004).

Kähler manifolds

- Every compact Kähler manifold X of dimension at most 3 can be approximated by projective manifolds (Kodaira 1960, Lin 2017).
- Log Minimal Model Programs and Abundance Theorem hold for compact Kähler varieties of dimension at most 3 (Höring-Peternell 2015, Campana, Das, Hacon, Ou...).
- Relative Minimal Model Programs hold for projective morphisms between complex analytic varieties (Das-Hacon-Păun 2022, Fujino 2022).

Rational curves in compact Kähler manifolds

- A rational curve is a compact complex analytic variety whose normalization is isomorphic to P¹.
- Mori's bend-and-break theorem (1979) shows that, if the canonical divisor K_X of a projective manifold X is not nef, then X contains a rational curve C such that $C \cdot K_X < 0$. The proof relies on the reduction modulo p.
- X is called uniruled if it is covered by rational curves.
 Miyaoka-Mori (1986) showed that X is uniruled if and only if X is covered by curves C with C · K_X < 0.
- Boucksom-Demailly-Păun-Peternell (2004) showed that the latter condition is equivalent to that K_X is not pseudoeffective.
- For compact Kähler surfaces, the previous characterization holds (Yau 1974).
 Brunella (2006) proved the characterization for compact Kähler threefolds.

Rational curves in compact Kähler manifolds

- Recently, we proved that a compact Kähler manifold X is uniruled if and only if its canonical line bundle ω_X is not pseudoeffective.
- Combined with previous works, we now know that if ω_X is not nef, then X contains a rational curve (Cao-Höring 2020). Furthermore, the cone theorem holds for compact Kähler manifolds (Hacon-Păun 2024).
- It remains to prove the contraction theorem for the MMP.
 This contraction conjecture was already raised in the theory of Kähler-Ricci flows in the 2000s (see Song-Tian, Tosatti, etc.)

Outline of the proof

- We follow the method of Brunella. Let X be a compact Kähler manifold such that ω_X is not pseudoeffective. We need to show that X is uniruled. We may assume that it is not projective. By Kodaira's embedding theorem, there is a non zero holomorphic 2-form $\sigma \in H^0(X, \Omega_X^2)$.
- The contraction with σ defines a morphism $T_X \to \Omega^1_X$. Let $\mathcal F$ be its kernel. We first note that $\mathcal F \neq T_X$ since $\sigma \neq 0$. Moreover, $\mathcal F \neq 0$. Otherwise, σ is generically non degenerate and $\sigma^{\wedge \frac{1}{2}\dim X}$ defines a section of ω_X .
- Since X is Kähler, the Hodge theory implies that σ is closed. Hence F is a foliation on X.
 If dim X = 3, then F* is a non pseudoeffective line bundle (F* < 0). Brunella managed to show that the closure of the leaves of F are rational curves. In particular, F is induced by a meromorphic map X --→ Y, and the 2-form σ comes from Y.

Outline of the proof

- In higher dimension, we will consider some maximal destabilizer \mathcal{F}' of \mathcal{F} . Then \mathcal{F}' is a foliation and its dual \mathcal{F}'^* is a non pseudoeffective reflexive coherent sheaf $(\mathcal{F}'^* < 0)$.
- Key step. We show that F' is induced by a meromorphic map X → Y, and the 2-form σ comes from Y.
 Unlike the case of threefolds, we do not know if the fibers are uniruled (It is now known to be true by Cao-Păun).
- Since 0 < dim Y < dim X, we can now argue by induction on dimensions and by contradiction as follows. If X is not uniruled, neither is F where F is a general fiber. Thus the canonical line bundle ω_F is pseudoeffective. Hence by the theory of positivity of direct images, ω_{X/Y} is pseudoeffective.
 It follows that ω_Y is not pseudoeffective and thus Y is uniruled by induction. By considering X → Y → Z, where Y → Z is the MRC fibration (rational quotient), we deduce that Y is rationally connected. Hence Y does not have non zero 2-forms. This is a contradiction.

Foliations induced by meromorphic maps

- A foliation \mathcal{F} on a complex manifold is a saturated coherent subsheaf of the tangent bundle T_X , which is closed under the Lie bracket.
- If f: X → Y is a surjective morphism between complex manifolds, then the relative tangent T_{X/Y}, which is the kernel of the differential map df: T_X → f*T_Y, is a foliation on X.
- A dominant meromorphic map $f: X \dashrightarrow Y$ between compact complex manifolds is a morphism $g: X' \to Y$, where $X' \to X$ is a composition of blowups. It induces a foliation on X.
- Let X be a compact complex manifold and let \mathcal{F} be a foliation. Let $X^{\circ} \subseteq X$ be the largest open smooth subset of X where \mathcal{F} is a subbundle of T_X .

Foliations induced by meromorphic maps

- Let $Z=X\times X$ and let $\Delta\subseteq Z$ be the diagonal. There is a foliation $\mathcal G$ on Z defined as $p_2^{-1}\mathcal F\cap p_1^{-1}0$. Let $Z^\circ=X^\circ\times X^\circ$ and $\Delta^\circ=\Delta\cap Z^\circ$. Then $\mathcal G$ is regular on Z° and is transversal to Δ° .
- The analytic (formal) graph Γ° of \mathcal{F} is the union of local leaves of \mathcal{G} passing through points of Δ° . It is a locally closed submanifold of $X \times X$.

The normal bundle $\mathcal{N}_{\Delta^{\circ}/S^{\circ}}$ is isomorphic to $\mathcal{F}|_{X^{\circ}}$.

• The foliation \mathcal{F} is induced by a meromorphic map if the Zariski closure of Γ° in $X \times X$ has the same dimension as Γ° .

Zariski closure

- Let X be a compact complex manifold, let S° be an irreducible locally closed submanifold, and let M be the Zariski closure of S° . It is natural to investigate if $\dim M = \dim S^{\circ}$. When the equality holds and when X is projective, we say that S° is algebraic.
- Example: Let $X = \mathbb{P}^2$, $X^\circ = \mathbb{C}^2$ and let $S^\circ \subseteq X^\circ$ be the graph of a holomorphic function φ on \mathbb{C} . Then M is a curve if and only if φ is a polynomial, by Chow's theorem.
- Bost's method (Bogomolov-McQuillan, 2001) (Hartshorne 1968). Assume X projective. Let L be an ample line bundle and let $x \in S^{\circ}$ be a general point.

For any integer D, i > 0, we define the vector subspace

$$E_D^i \subseteq H^0(X, L^{\otimes D})$$

of global sections σ of $L^{\otimes D}$ such that $\sigma|_{S^{\circ}}$ vanishes at x with order at least i.

Zariski closure

- Then we have $\cdots \supseteq E_D^i \supseteq E_D^{i+1} \supseteq \cdots$. Moreover, $E_D^\infty := \cap_{i \geqslant 1} E_D^i$ is the subspace of global sections σ of $L^{\otimes D}$ which vanishes along S° (hence along M).
- Characterization. S° is algebraic if and only if there is a number $\lambda > 0$ such that $E_D^i = E_D^{i+1} = E_D^{\infty}$ whenever $i \cdot D^{-1} \geqslant \lambda$.
- Reason. Assume that dim $M = \dim S$. Let $\sigma \in E_D^i \setminus E_D^{\infty}$. Then

$$\sigma':=\sigma|_M\in H^0(M,(L|_M)^{\otimes D}).$$

The vanishing order of σ' at x is at least i, for $M=S^\circ$ around x. It follows that $i \cdot D^{-1}$ is bounded from above by some constant depending on x and $L|_M$ (Seshadri constant).

Analytic Viewpoint

- Assume that $0 \neq \sigma \in H^0(X, L^{\otimes D})$. Then σ induces a singular Hermitian metric h on L as follows. Assume that ρ is a local section of L. Then $\frac{\rho^D}{\sigma}$ is a local meromorphic function on X. We then define $h(\rho) = |\frac{\rho^D}{\sigma}|^{\frac{1}{D}}$.
- Let ω be a Kähler form in the class of $c_1(L)$. It follows that σ induces a ω -psh function φ , such that $\varphi = \frac{1}{D} \log |\sigma| + O(1)$.
- Then $\sigma \in E_D^i \setminus E_D^{i+1}$ if and only if the Lelong number satisfies $\nu(\varphi|_{S^{\circ}}, x) = i \cdot D^{-1}$.
- We expect to adapt Bost's method in the setting of Kähler manifolds, in the language of psh functions and Lelong numbers.

Plurisubharmonic functions and Lelong numbers

- Currents are dual to differential forms with compact supports via integration. They are differential forms with distribution coefficients.
 A subvariety defines a current by taking the integration on it.
- A real locally integrable (L^1_{loc}) function φ on an open domain U of \mathbb{C}^n is called plurisubharmonic (psh) "if" $\mathrm{dd^c}\varphi$ is a positive (1,1)-current, and if φ is upper-semicontinuous. Here $\mathrm{dd^c} = \frac{\sqrt{-1}}{\pi} \partial \overline{\partial}$.
- Using local charts, we can define psh functions on any complex manifold.
 However, by the maximum principle, any psh function on a compact complex manifold must be constant.
- Let θ be any closed real \mathcal{C}^{∞} (1, 1)-form on a complex manifold X. A real locally integrable upper-semicontinuous function φ on X is called θ -psh if $\mathrm{dd}^c \varphi + \theta$ is a positive current. In general, φ is quasi-psh if it is θ -psh for some θ .

Plurisubharmonic functions and Lelong numbers

• Assume that φ is a quasi-psh function. The Lelong number $\nu(\varphi,x)$ is defined as

$$\nu(\varphi, x) = \sup\{\lambda \geqslant 0 \mid \varphi(y) \leqslant \lambda \log |y - x| + O(1) \text{ around } x\},$$

 \bullet φ is said to have analytic singularities around x if locally around x, we can write

$$\varphi = \frac{\alpha}{2} \cdot \log(|g_1|^2 + \cdots + |g_r|^2) + O(1),$$

where $\alpha \ge 0$ is a real number, $g_1, ..., g_r$ are holomorphic functions.

- ullet In the situation above, the Lelong number u(arphi, x) is equal to
 - α multiplied by the minimal vanishing order of $g_1,...,g_r$ at x.

Algebraic geometry and Kähler geometry

Algebraic setting	Kähler setting
divisors, divisor classes	currents, cohomology classes
$N^1(X)$	$H^{1,1}(X,\mathbb{R})$
ample divisor, ample class	Kähler form, Kähler class
nef class = limit of ample classes	nef class = limit of Kähler classes
psef class = limit of effective	psef class = class of a positive cur-
classes	rent
$A \equiv B$	$\alpha = \beta + \mathrm{dd^c}\varphi$
vanishing order at a point	Lelong number at a point
curve classes in $N_1(X)$	classes in $H^{n-1,n-1}(X,\mathbb{R})$

Analogy of Bost's characterization

Let (X, ω) be a compact Kähler manifold, let $S^{\circ} \subseteq X$ be an irreducible locally closed submanifold of smaller dimension. Assume that S° is Zariski dense, i.e. M = X. Let $\lambda > 0$ be any real number.

Theorem (Simple version)

Let $x \in S^{\circ}$ be a general point. There is a ω -psh function φ , with analytic singularities, such that $\varphi|_{S^{\circ}} \not\equiv -\infty$, and that $\nu(\varphi|_{S^{\circ}}, x) \geqslant \lambda$.

- Bost's criterion says that if S° is algebraic, then there is some $\mu > 0$ such that if $i \cdot D^{-1} \geqslant \mu$, then $i = \infty$. Recall that $\sigma \in H^0(X, L^D)$ and i is the vanishing order of $\sigma|_{S^{\circ}}$ at x.
- Firstly we apply Demailly's mass concentration (1993, relying on Yau's theorem in 1978) to get large $\nu(\varphi|_{S^\circ}, x)$. Secondly we apply Demailly's regularization of currents (1992) to get analytic singularities.

Analogy of Bost's characterization

Let (X, ω) be a compact Kähler manifold, let $S^{\circ} \subseteq X$ be an irreducible locally closed submanifold of smaller dimension. Assume that S° is Zariski dense, i.e. M = X. Let $\lambda > 0$ be any real number.

Theorem (General version)

Assume that C is an irreducible compact submanifold of X with $\dim C = \dim S^{\circ} - 1$. Suppose that S° contains a Zariski open subset C° of C. Furthermore,

- the prime divisors on C contained $C \setminus C^{\circ}$ form an exceptional family,
- 2 S° extends formally along C.

Then there is a ω -psh function φ , with analytic singularities, such that $\nu(\varphi|_{S^{\circ}}, x) \geqslant \lambda$ for all $x \in C^{\circ}$.

Application

Theorem ("Algebraicity" Criterion I)

Let (X, ω) be a compact Kähler manifold, let $S^{\circ} \subseteq X$ be an irreducible locally closed submanifold of smaller dimension. Assume that C is an irreducible compact submanifold of X with dim $C = \dim S^{\circ} - 1$. Suppose that S° contains a Zariski open subset C° of C. Furthermore,

- the prime divisors on C contained $C \setminus C^{\circ}$ form an exceptional family,
- ② S° extends formally along C,
- the conormal bundle $\mathcal{N}^*_{C^{\circ}/S^{\circ}}$ extends to a line bundle \mathcal{N}^* on C, such that $c_1(\mathcal{N}^*) + \delta$ is not pseudoeffective for any class δ supported in $C \setminus C^{\circ}$ ($\mathcal{N}^* < 0$).

Then 5° has the same dimension as its Zariski closure.

Application

Theorem ("Algebraicity" Criterion $\sf II$)

Let (X, ω) be a compact Kähler manifold, let $S^{\circ} \subseteq X$ be an irreducible locally closed submanifold of smaller dimension. Assume that C is an irreducible compact submanifold of X. Suppose that S° contains a Zariski open subset C° of C. Furthermore,

- the codimension of $C \setminus C^{\circ}$ is at least 2 in C,
- ② S° extends formally along C,
- **1** the conormal bundle $\mathcal{N}^*_{C^{\circ}/S^{\circ}}$ extends to a reflexive coherent sheaf \mathcal{N}^* on C, which is non pseudoeffective $(\mathcal{N}^* < 0)$.

Then 5° has the same dimension as its Zariski closure.

We blow up C in X, and reduce to the situation of "Algebraicity"
 Criterion I.

Proof of "Algebraicity" Criterion I

- We assume by contradiction that S° is Zariski dense in X.
- Then by the density theorem, for any given constant λ , there exists a ω -psh function φ , such that $\nu(\varphi|_{S^{\circ}}, x) = \nu \geqslant \lambda$ for general points $x \in C^{\circ}$.
- For simplicity, we assume $C = C^{\circ}$.
- Siu's decomposition.

$$(\omega + \mathrm{dd^c}\varphi)|_{S^\circ} - \nu[C]$$

is a positive current on S° . We can restrict it on C. It follows that

$$\{\omega\}|_{\mathcal{C}} + \nu c_1(\mathcal{N}^*) = \nu \cdot (\frac{1}{\nu}\{\omega\}|_{\mathcal{C}} + c_1(\mathcal{N}^*))$$

is a pseudoeffective class on C. This is a contradiction for \mathcal{N}^* is not pseudoeffective.

Foliation induced by meromorphic maps

Theorem (Foliation induced by meromorphic maps)

Let (X, ω) be a compact Kähler manifold, let $\mathcal F$ be a foliation on X. Assume that $\mathcal F^*$ is non pseudoeffective $(\mathcal F^* < 0)$. Then $\mathcal F$ is induced by a meromorphic map.

- Let $\alpha \in H^{n-1,n-1}(X,\mathbb{R})$ be a movable class. If the minimal slope $\mu_{\alpha,\min}(\mathcal{F}) > 0$, then \mathcal{F}^* is non pseudoeffective.
- Proof. We consider the the analytic graph of \mathcal{F} . It is a locally closed submanifold S° in $Z = X \times X$. It contains $\Delta^{\circ} \cong X^{\circ}$, where $\Delta \subseteq Z$ is the diagonal and X° is the regular locus of \mathcal{F} . Then the conormal $\mathcal{N}^{*}_{\Delta^{\circ}/S^{\circ}}$ is isomorphic to $\mathcal{F}^{*}|_{X^{\circ}}$. We can apply "Algebraicity" Criterion II to conclude.

Thank you!