On the YTD conjecture for general polarizations

Mattias Jonsson

University of Michigan

Moduli of Varieties, April 30, 2025

Joint work with S. Boucksom

The YTD conjecture

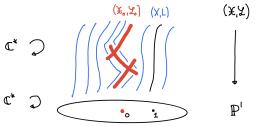
- (X, L) polarized smooth complex projective variety.
- Say "(X,L) cscK" if there exists $\omega \in c_1(L)$ such that

$$\operatorname{Ric} \omega \wedge \omega^{n-1} = \frac{\bar{S}}{n} \omega^n.$$

- **Y(TD)** conjecture: (X, L) is cscK iff (X, L) satisfies some AG stability condition.
- Well understood by now when X Fano and $L = -K_X$. Stability is K-polystability.
- We will look at the general polarized case.
- Assume Aut(X, L) finite for the moment.

Known results

- Thm [Boucksom–Hisamoto–J '17]: (X, L) cscK $\implies (X, L)$ uniformly K-stable.
- Thm [C. Li '22]: (X, L) uniformly K-stable for models $\implies (X, L)$ cscK.
- Uniform K-stability involves (semi)ample test configurations $(\mathcal{X}, \mathcal{L})$ for (X, L).



- Uniform K-stability for models involves general (not necessarily ample) tc's.
- Uniform K-stability for models ⇒ uniform K-stability.
- **Q**: is the converse true?
- A: we don't know!

Main Theorems

• Thm A [Boucksom-J '25] If Aut(X, L) is finite, then

$$(X, L)$$
 cscK \iff (X, L) uniformly K-stable for models

- This can be viewed as a positive answer to the YTD conjecture.
- Also have a version when Aut(X, L) is infinite. In fact, have "weighted" version:

Fix maximal torus $T \subset Aut(X, L)$.

Let $P \subset M_{\mathbb{R}}(T)$ be the moment polytope.

Fix "weight" functions $v, w \in C^{\infty}(P)$, with v > 0.

Can define the notion of a (v, w) - cscK metric (Lahdili).

Examples: extremal metrics and Kähler-Ricci solitons.

• **Thm A'** Assume *v* is log concave. Then

$$(X, L)$$
 is (v, w) -cscK \iff (X, L) is (v, w) -uniformly K-stable for models

• Will focus on Theorem A to fix ideas. Theorem A' is more technical.

AG and NAG

- Algebro-geometric conditions should only involve (X, L) as an algebraic variety...
- ... but (X, L) canonically induces a Berkovich analytification (X^{na}, L^{na}) with respect to the *trivial* absolute value on \mathbb{C} , leading to *non-Archimedean* geometry.
- Here X^{na} is compact (Hausdorff) and we have dense inclusions

$$X^{\mathrm{na}} \supset X^{\mathrm{val}} \supset X^{\mathrm{divval}}$$

• If \mathcal{I} is the semiring of coherent ideal sheaves on X, then X^{an} is the set of homoms

$$v: \mathcal{I} \to [0, +\infty],$$

and $v \in X^{\mathrm{val}}$ iff $v(I) < +\infty$ for $I \neq 0$.

- Test configurations (ample or not) induce "non-Archimedean" metrics on L^{na} .
- K-stability phrased as conditions on functionals on spaces of metrics on L^{na} .

Overview of proof

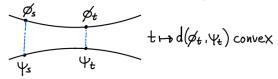
The proof uses several steps, not all of which are new (or due to us).

- (1) Coercivity criterion for cscK metrics [..., Chen-Cheng '21,...]: reduces the existence of a cscK metric to the behavior (coercivity) of the Mabuchi functional.
- (2) Geodesic rays [Berman–B–J '21]: suffices to have coercivity along geodesic rays.
- (3) Maximal geodesic rays [BBJ '21]. These are induced by non-Archimedean metrics. By [Li '22], it suffices to consider coercivity along such rays.
- (4) Asymptotics along maximal geodesic rays. The slope at infinity of the Mabuchi functional along a maximal geodesic ray is always equal to the non-Archimedean Mabuchi functional. This is the key new step.
- (5) Non-Archimedean regularization. The rays obtained in (3) could come from very singular non-Archimedean metrics. By a regularization argument, it is enough to consider metrics associated to general test configurations.

The weighted case presents challenges...but is ultimately handled in the same way.

Coercivity criterion for cscK metrics

- $\mathcal{H} := \mathcal{H}(X, L) := \{ \text{smooth positive metrics on } L \}.$
- $\mathcal{E} := \mathcal{E}^1(X, L)$ completion of \mathcal{H} wrt Darvas metric d.
- Berman–Darvas–Lu '17: \mathcal{E} is Buseman convex (wrt psh geodesics).



- CscK metrics are critical points of the *Mabuchi functional* M: $\mathcal{H} \to \mathbb{R}$.
- Berman–Darvas–Lu '17: the Mabuchi functional extends to M: $\mathcal{E} \to \mathbb{R} \cup \{+\infty\}$.
- Chen–Cheng '21: (X, L) cscK iff M is *coercive* on \mathcal{E} :

$$M \ge \sigma d(\cdot, \phi_{ref}) - C$$
 where $\sigma, C > 0$.

 Versions for weighted cscK metrics by He '19, Apostolov–Jubert–Lahdili '23, Di Nezza–Jubert–Lahdili '24-25, Han–Liu '25.

Coercivity and geodesic rays

- $\hat{\mathcal{E}} := \{ \text{geodesic rays } \hat{\phi} = (\phi_t)_{t \geq 0} \text{ in } \mathcal{E} \text{ starting at } \phi_{\text{ref}} \}.$ This comes with
 - a canonical point $0 \in \hat{\mathcal{E}}$ (the constant ray);
 - a metric \hat{d} : $d((\phi_t), (\psi_t)) = \lim_{t \to +\infty} \frac{1}{t} d(\phi_t, \psi_t)$.

- [Berman-Berndtsson '17, BDL '17]: M is convex along psh geodesics.
- $\hat{M}: \hat{\mathcal{E}} \to \mathbb{R} \cup \{+\infty\}$ slope of Mabuchi at infinity.

$$\mathsf{M}(\hat{\phi}) = \lim_{t \to +\infty} \frac{1}{t} \mathsf{M}(\phi_t).$$

• By [BBJ '21, CC '21,...] suffices to test coercivity along geodesic rays:

$$M \ge \sigma d(\cdot, \phi_{\mathrm{ref}}) - C$$
 on $\mathcal{E} \iff \hat{M} \ge \sigma \hat{d}(\cdot, 0)$ on $\hat{\mathcal{E}}$

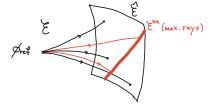
• This is like a Hilbert–Mumford criterion in an infinite-dimensional setting.

Stability in terms of non-Archimedean geometry

- There are non-Archimedean versions of the spaces and functionals above.
- \mathcal{H}^{na} is the space of *ample* test configurations for (X, L).
- This has a Darvas metric d^{na} , with completion \mathcal{E}^{na} .
- The elements of \mathcal{E}^{na} can be viewed as (singular) metrics on L^{na} . Examples include metrics coming from *general* (not necessarily ample) test configurations.
- There is a Mabuchi functional M^{na} : $\mathcal{E}^{na} \to \mathbb{R} \cup \{+\infty\}$.
- Uniform K-stability means $M^{na} \ge \sigma d^{na}(\cdot, 0)$ on \mathcal{H}^{na} , $\sigma > 0$.
- Uniform K-stability for models means $M^{\mathrm{na}} \geq \sigma d^{\mathrm{na}}(\cdot,0)$ on $\mathcal{E}^{\mathrm{na}}$, $\sigma > 0$.
- Regularization ⇒ suffices to check last condition on general test configurations.
- ullet Unclear if it suffices to test on $\mathcal{H}^{\mathrm{na}}$ i.e. ample test configurations.

Maximal geodesic rays and coercivity

- ullet By [BBJ '21], every non-Archimedean metric induces a geodesic ray in ${\mathcal E}.$
- ullet We get an embedding $\mathcal{E}^{\mathrm{na}}\hookrightarrow\hat{\mathcal{E}}$, which is in fact isometric.



- The rays in the image are called *maximal* geodesic rays.
- The max ray associated to a general test configuration $(\mathcal{X}, \mathcal{L})/\mathbb{P}^1$ corresp. to the largest S^1 -invariant psh metric on $\mathcal{L}|_{\mathbb{D}}$ with boundary conditions ϕ_{ref} above $\partial \mathbb{D}$.
- By [Li '21], $\hat{M}(\hat{\phi}) = +\infty$ for any non-maximal geodesic ray $\hat{\phi}$.
- Thus, suffices to check coercivity along *maximal* geodesic rays.

Mabuchi asymptotics along maximal geodesic rays

- As we can test coercivity along maximal geodesic rays, we in principle have a non-Archimedean (=algebraic!) criterion for (X, L) being cscK.
- To make this more concrete, we need to compute the slope \hat{M} at infinity of the Mabuchi functional along a maximal geodesic ray.
- Key new result: $\hat{M} = M^{na}$ for any maximal geodesic ray.
- This implies the main theorem (when Aut(X, L) is finite).
- Earlier results:
 - [BHJ '17]: $\hat{M} = M^{na}$ for any maximal geodesic ray coming from an *ample* test configuration. Thus (X, L) cscK $\Rightarrow (X, L)$ uniformly K-stable.
 - [Li '21]: $M^{na} \leq \hat{M}$ for any maximal geodesic ray. Thus (X, L) uniformly K-stable for models $\Rightarrow (X, L)$ cscK.

Asymptotics along maximal rays

- How to control the Mabuchi functional along maximal geodesic rays?
- What is the Mabuchi functional anyway?
- We have $M = H + R + \bar{S}E$ and $M^{na} = H^{na} + R^{na} + \bar{S}E^{na}$.
- Here R and E are *energy* terms that are easier to control. The *entropy* term H is more subtle. We have

$$H(\phi) = \int_X \log rac{\mathsf{MA}(\phi)}{\mathsf{MA}(\phi_{\mathrm{ref}})} \, \mathsf{MA}(\phi) \quad \mathsf{and} \quad \mathsf{H}^{\mathrm{na}}(\varphi) = \int_{X^{\mathrm{na}}} A_X \, \mathrm{MA}^{\mathrm{na}}(\varphi),$$

- MA^{na}(ϕ) and MA^{na}(φ) are Monge–Ampère measures on X and X^{na}, resp.;
- $A_X: X^{\mathrm{na}} \to [0, +\infty]$ is the log discrepancy.
- Must show that if $\hat{\phi} = (\phi_t)_{t \geq 0}$ is the geodesic ray in \mathcal{E} starting at ϕ_{ref} and directed by $\varphi \in \mathcal{E}^{\mathrm{na}}$, then $\hat{\mathsf{H}}(\hat{\phi}) := \lim_{t \to \infty} t^{-1} H(\phi_t) = \mathsf{H}^{\mathrm{na}}(\varphi)$.

Regularization and test configurations

- Must show that if $(\phi_t)_{t\geq 0}$ is the geodesic ray in \mathcal{E} starting at ϕ_{ref} and directed by $\varphi \in \mathcal{E}^{\mathrm{na}}$, then $\lim_{t\to\infty} t^{-1} \mathsf{H}(\phi_t) = \mathsf{H}^{\mathrm{na}}(\varphi)$.
- By regularization may assume φ comes from a general test configuration $(\mathcal{X}, \mathcal{L})$.
- The regularization argument relies on solving a non-Archimedean Monge–Ampère equation [B–Favre–J '15], [BJ '22].
- If φ comes from $(\mathcal{X}, \mathcal{L})$, we have useful formulas. If $\mathcal{X}_0 = \sum_i b_i E_i$, then

$$\mathrm{MA^{\mathrm{na}}}(\varphi) = \sum_{i} b_{i} \, \mathrm{vol}_{\mathcal{X}|E_{i}}(\mathcal{L}) \delta_{v_{i}} \quad \text{and} \quad \mathsf{H^{\mathrm{na}}}(\varphi) = \sum_{i} b_{i} \, \mathrm{vol}_{\mathcal{X}|E_{i}}(\mathcal{L}) A_{X}(v_{i}). \quad (\star)$$

where $v_i = b_i^{-1} \operatorname{ord}_{E_i} \in X^{\operatorname{div}}$ corresponds to E_i .

Asymptotics along rays induced by general test configurations

- Let $(\mathcal{X}, \mathcal{L})/\mathbb{P}^1$ be a general (not nec. ample) test configuration for (X, L).
- There are several asymptotic base loci of \mathcal{L} :

$$\mathbb{B}^{\mathrm{rel}}_{-}(\mathcal{L}) \subset \mathbb{B}^{\mathrm{rel}}_{+}(\mathcal{L}) \subset \mathbb{B}_{+}(\mathcal{L}) \subset \mathcal{X}.$$

• After perturbation, we may assume

$$\mathbb{B}^{\mathrm{rel}}_-(\mathcal{L}) = \mathbb{B}^{\mathrm{rel}}_+(\mathcal{L}) = \mathbb{B}_+(\mathcal{L}) \subset \mathcal{X}_0.$$

In particular, \mathcal{L} is big.

- Pick a smooth, S^1 -inv metric Ψ on \mathcal{L} , and let $\Phi := P_{\mathcal{L}}(\Psi)$ be its psh envelope.
- The metric Φ gives rise to a (non-geodesic) ray in \mathcal{E} which approximates the geodesic ray $(\phi_t)_{t>0}$ well. The latter arises from an envelope on $\mathcal{L}|_{\mathbb{D}}$.
- We can now control the entropy along this ray using two facts:
 - [Berman–Demailly '12, Di Nezza–Trapani '24], the singularities of Φ are controlled by $\mathbb{B}_+(\mathcal{L})$.
 - By (\star) , $H^{\mathrm{na}}(\varphi)$ is calculated via $\mathbb{B}^{\mathrm{rel}}_{-}(\mathcal{L})$.

The weighted version

- The strategy when Aut(X, L) is infinite is similar.
- Pick $T \subset \operatorname{Aut}(X, L)$ maximal (complex) torus, with compact torus $T_c \subset T(\mathbb{C})$.
- This time, \mathcal{E} consists of T_c -invariant metrics, and T acts on \mathcal{E} .
- Coercivity of M now means coercivity on \mathcal{E} wrt the quotient metric on \mathcal{E}/\mathcal{T} .
- Similarly, $\mathcal{E}^{\mathrm{na}}$ consists of $T(\mathbb{C})$ -invariant metrics, and $N_{\mathbb{R}}$ acts on $\mathcal{E}^{\mathrm{na}}$.
- ullet Coercivity on $\mathcal{E}^{\mathrm{na}}$ means wrt the quotient metric on $\mathcal{E}^{\mathrm{na}}/N_{\mathbb{R}}$.
- Added technical difficulties in the weighted case, as we need to develop weighted pluripotential theory (Archimedean and non-Archimedean).
- Extends earlier work was by [Lahdili '19, Han-Li '22, B-J-Trusiani '25...]

Comments and questions

- In the Fano case $L = -K_X$ it suffices to consider *special* test configurations. These are associated with (dreamy) divisorial valuations.
- [BJ23]: For (X, L) general, uniform K-stability for models can be expressed as a conditions on *divisorial measures*, convex combinations of divisorial valuations.
- Still unclear if uniform K-stability is equivalent to uniform K-stability for models.
- Uniform K-stability for models is equivalent to the non-uniform inequality $M^{na}(\varphi) > 0$ for all $\varphi \in \mathcal{E}^{na}$. Does it suffice to take φ associated to a test configuration?
- Does the main result hold in the Kähler case? Mesquita-Piccione '24 proved one direction (analogue of Li '22).