Wall crossing for moduli spaces of varieties

Kristin DeVleming

UCSD

January 29, 2025

Introduction

- Existence of moduli spaces of varieties
- Wall crossing framework
- Applications

Throughout, we consider projective varieties over \mathbb{C} .

KSB moduli spaces

For example:

Consider slc varieties X with ample canonical divisor K_X and families $\mathcal{X} \to B$ satisfying the Kollár condition.

- Genus $g \ge 2$ smooth or nodal curves
- ullet Smooth or mildly singular hypersurfaces of degree d>n+1 in \mathbb{P}^n
- Surfaces with fixed p_g , q

KSB moduli spaces

Consider slc varieties X with ample canonical divisor K_X and families $\mathcal{X} \to B$ satisfying the Kollár condition.

Theorem,

For any n, V, there exists a proper Deligne-Mumford stack $\mathcal{M}_{n,V}$ and projective coarse moduli space $M_{n,V}$ parametrizing slc varieties X of dimension n with ample K_X and $(K_X)^n = V$.

For n > 1, very few complete explicit descriptions of these moduli spaces exist. Many partial descriptions are known.

Explicit KSB moduli spaces

Completely described KSB moduli spaces of canonically polarized varieties:

- (Deligne, Mumford) $\overline{\mathcal{M}_g}$: stable genus g curves
- (van Opstall, Liu, Rollenske) surfaces that are quotients and covers of products of curves
- (Alexeev, Pardini) Campedelli and Burniat surfaces

KSB(A) moduli spaces

This has an extension to slc pairs (X, D) with $K_X + D$ ample:

Theorem

For any n, V, and fixed marking of the divisor, there exists a proper Deligne-Mumford stack $\mathcal{M}_{n,V}$ and projective coarse moduli space $M_{n,V}$ parametrizing slc pairs (X,D) such that dim $X=n, K_X+D$ is ample, and $(K_X+D)^n=V$.

A few more (complete) explicit examples are known in this case, especially for $D=\epsilon\Delta$ for $\epsilon\ll 1$ (Alexeev, Hacking, ...). There is a huge body of literature studying explicit KSB(A) moduli spaces.

K-moduli spaces

Consider K-semi/polystable Fano varieties X, i.e. klt varieties X with $-K_X$ ample satisfying an extra stability condition. For example:

- \mathbb{P}^n is K-polystable
- for (smooth) del Pezzo surfaces:
 - \mathbb{P}^2 , $\mathbb{P}^1 \times \mathbb{P}^1$, dP6 K-semistable
 - $Bl_p\mathbb{P}^2$, dP7 K-unstable
 - For $d \le 5$, all are K-stable
- (Chen-Donaldson-Sun, Liu-Xu-Zhuang): A Fano variety X is K-polystable if and only if X admits a KE metric.

K-moduli spaces

Consider K-semi/polystable Fano varieties X.

Theorem

For any n, V, there exists a finite type Artin stack $\mathcal{M}_{n, V}^{ss}$ and projective good moduli space $M_{n, V}^{ps}$ parametrizing K-semi and poly stable varieties X of dimension n with ample $-K_X$ and $(-K_X)^n = V$.

We have complete descriptions of several K-moduli spaces.

Explicit K-moduli spaces

- (Odaka, Spotti, Sun): complete descriptions of K-moduli spaces compactifying the locus of smooth del Pezzo surfaces for each degree
- (Cheltsov, ...): complete descriptions of moduli spaces for many families of Fano threefolds (for which K-moduli is nonempty).

K-moduli spaces

This also has an extension to pairs.

Theorem

For any n, V and fixed rational marking of the divisor, there exists a finite type Artin stack $\mathcal{M}_{n,V}^{ss}$ and projective good moduli space $M_{n,V}^{ps}$ parametrizing K-semi and poly stable pairs (X,D) such that dim X=n, $-(K_X+D)$ is ample, and $(K_X+D)^n=V$.

Prototypical Example

Suppose X is Fano and $D \in \left| -\frac{1}{r}K_X \right|$ an ample \mathbb{Z} -divisor, $r \in \mathbb{Q}^{>0}$. Then,

antiample if
$$c < r$$

 $K_X + cD$ is trivial if $c = r$
ample $c > r$.

Can use the previous results to construct moduli stacks of pairs:

$$\mathcal{M}_c(\mathbb{C}) = \left\{ (Y, cD_Y) \middle| \begin{array}{l} \dim Y = \dim X \\ (K_Y + cD_Y)^{\dim X} = (K_X + cD)^{\dim X} \\ \text{if } c > r : (X, cD) \text{ slc }, K_X + cD \text{ ample} \\ \text{if } c < r : (X, cD) \text{ K-semistable log Fano} \end{array} \right\}.$$

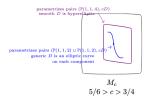
Question

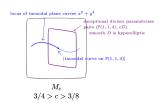
How do these moduli stacks and their associated moduli spaces vary with c? What about c = r?

Moduli of plane curves

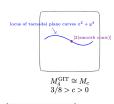
Suppose $X = \mathbb{P}^2$ and D is a degree 4 plane curve.

$$\overline{\mathbf{M}}_3 = M_{1-\epsilon}$$





 $M_{3/4}$



The values of c for which the moduli spaces change are called **walls** and a description of the change in the moduli space from $c_0 + \epsilon$ and $c_0 - \epsilon$ are called **wall crossings**.

There is a general theory of wall crossing for the prototypical example.

Theorem [Ascher-D-Liu, Zhou]

In the log Fano case, there exists a finite sequence of rational numbers $0 < c_0 < c_1 \cdots < c_k < r$ where the stability conditions change, and

- for $c,c'\in(c_i,c_{i+1})\cap\mathbb{Q}$, $\mathcal{M}_c\cong\mathcal{M}_{c'}$;
- there are open immersions $\mathcal{M}_{c_i+\epsilon}\hookrightarrow \mathcal{M}_{c_i} \hookleftarrow \mathcal{M}_{c_i-\epsilon}$ of the K-moduli stacks
- the open immersions descend to projective morphisms $M_{c_i+\epsilon} o M_{c_i} \leftarrow M_{c_i-\epsilon}$ of the K-moduli spaces

This generalizes to the case of multiple divisors and a coefficient vector and recent work of Liu and Zhou extends this to the non-proportional case $D \sim -\frac{1}{r}K_X$.

Theorem [Ascher-Bejleri-Inchoistro-Patakfalvi, Meng-Zhuang]

In the log canonically polarized case, there exists a finite sequence of rational numbers $r < c_0 < c_1 \cdots < c_k < 1$ where the stability conditions change, and

- for $c, c' \in (c_i, c_{i+1})$, $\mathcal{M}_c \cong \mathcal{M}_{c'}$;
- there are morphisms $\mathcal{M}_{c_i+\epsilon} \to \mathcal{M}_{c_i} \leftarrow \mathcal{M}_{c_i-\epsilon}$ of the KSB(A)-moduli stacks
- the morphism descend to projective morphisms $M_{c_i+\epsilon} \to M_{c_i} \leftarrow M_{c_i-\epsilon}$ of the KSB(A)-moduli spaces, where the right arrow is an isomorphism up to normalization

This also generalizes to the case of multiple divisors with a coefficient vector and the non-proportional case.

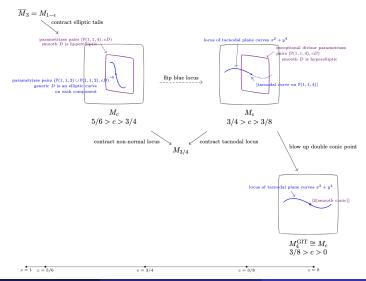
Theorem [Ascher-Bejleri-Blum-D-Inchoistro-Liu-Wang, Blum-Liu]

There is an Artin stack locally of finite type \mathcal{M}_r parametrizing bpCY pairs (X, rD) (slc such that $K_X + rD \sim_{\mathbb{Q}} 0$), whose main component admits an asymptotically good moduli space M_r if dim X = 2, such that

- there are open immersions $\mathcal{M}_{r+\epsilon} \hookrightarrow \mathcal{M}_r \hookleftarrow \mathcal{M}_{r-\epsilon}$ (provided both sides are nonempty);
- the open immersions descend (on the main component) to projective morphisms $M_{r+\epsilon} \to M_r \leftarrow M_{r-\epsilon}$ and M_r is the ample model of the Hodge bundle on either side.

Wall crossing: a typical case

Suppose $X = \mathbb{P}^2$ and D is a degree 4 plane curve.



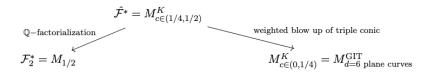
Applications

Wall crossing gives us an opportunity to interpolate between several different moduli stacks/spaces.

- The K-moduli spaces tend to be simpler to describe completely
- For different values of c, these may coincide with other modular compactifications (GIT, BB, ...).
- We use wall crossing to transport information from one moduli space to the next.

Applications: Chow and Cohomology

Wall crossing for sextic plane curves (Shah, Looijenga, Ascher-D-Liu):



- Kirwan-Lee: compute Betti numbers and cohomology of $H^*(\hat{\mathcal{F}}_2^*)$ of Baily-Borel compactification of degree 2 K3 surfaces
- ② Canning-Oprea-Pandharipande: compute $A^*(\mathcal{F}_2) = H^{2*}(\mathcal{F}_2)$ the Chow and cohomology ring of the moduli space of degree 2 K3s
- Sacher-Lee (in progress): compute Chow and cohomology rings of other moduli spaces plane curves.

Idea: use explicit description of wall crossings to determine what classes are added, understand relations from removing classes

Applications: Log canonical models of moduli space

Hassett-Keel Program

Let $\mathbf{M}_g(\alpha) = \operatorname{Proj}\left(R(\overline{\mathcal{M}}_g, K_{\overline{\mathcal{M}}_g} + \alpha\delta)\right)$. Does each variety $\mathbf{M}_g(\alpha)$ have a modular interpretation?

Hassett-Keel-Looijenga Program

Let $\mathcal{F}_{2l}(\mathbf{a}) = \operatorname{Proj} (R(\mathcal{F}_{2l}, \lambda + a_1H_1 + \cdots + a_nH_n))$ for H_i Heegner divisors. Do these have modular interpretations?

Applications: Log canonical models of moduli space

- Ascher-D-Liu, Hassett: Wall crossing for quartic plane curves recovers the Hassett-Keel program for $\overline{\mathcal{M}_3}$.
- Ascher-D-Liu-Wang: Complete the Hassett-Keel program in genus 4 (find all walls, provide description of wall crossings)
- **3** Ascher-D-Liu: Looijenga program for $\mathcal{F}_4^*(a,b)$ degree 4 K3s, interpolating between \mathcal{F}_4^* and GIT of quartic surfaces, verifying conjectures of Laza-O'Grady

Main idea: verify ampleness of appropriate log canonical divisor on each M_c , use uniqueness of log canonical models.

Observation: gives an alternative perspective for Baily-Borel; notably, gives a stack with a universal family whose good moduli space is (\mathbb{Q} -factorialization of) \mathcal{F}^* for degree 2 K3s (degree 4 K3s).

Applications: Explicit constructions of K-moduli

K-moduli of Fano threefolds

For a fixed deformation family of smooth Fano threefolds, which are K-(semi/poly)stable? If a general member is K-(semi/poly)stable, can one describe the entire irreducible component of $\mathcal{M}^{ss}(\mathbb{C})$?

Wall crossing input:

- Many of these Fanos occur as covers of other Fanos, e.g. quartic double solids X = double covers of \mathbb{P}^3 branched over a quartic S.
 - ullet Liu-Zhu, Zhuang: K-semistability of $X\leftrightarrow ext{K-semistability}$ of $(Y, rac{n-1}{n}D)$
- Others appear as hypersurfaces in Fanos, e.g. quartic hypersurfaces in \mathbb{P}^n for $n \geq 4$.

Leads to studying moduli of pairs (X, cD): start with $c \ll 1$ ('simpler') and increase coefficient ('more complicated').

Applications: Explicit constructions of K-moduli

K-moduli of Fano threefolds

For a fixed deformation family of smooth Fano threefolds, which are K-(semi/poly)stable? If a general member is K-(semi/poly)stable, can one describe the entire irreducible component of $\mathcal{M}^{ss}(\mathbb{C})$?

- Ascher-D-Liu: Complete description of $\mathcal{M}_{1/2}$ for pairs compactifying locus $(\mathbb{P}^3, \frac{1}{2}S)$ which gives a complete description of the K-moduli of quartic double solids 1-12.
- Many other examples:
 - Abban-Cheltsov-Kasprsyk-Liu-Petracci 1-2
 - 2 Liu-Zhao 2-15
 - O-Ji-Kennedy-Hunt-Quek 2-18
 - 4 ..

Applications: Explicit constructions of KSB moduli

KSB moduli of surfaces

Describe the complete KSB moduli spaces for surfaces with fixed numerical invariants.

H- and I- surfaces: double covers of \mathbb{P}^2 branched along an octic or $\mathbb{P}(1,1,2)$ branched along a curve of degree $10 \rightsquigarrow$ studying moduli of pairs $(X,\frac{1}{2}D)$.

In progress (Ascher-D-Liu-Rana-Si):

- **1** K-moduli wall crossing for pairs (X, cD) for $c \in (0, r)$, $K_X + rD \sim 0$
- 2 bpCY wall crossing for c = r
- **SET IDENTIFY** STATES **SET IDENTIFY** STATES **SET IDENTIFY** SET IDENTIFY TO SE
- **4** Can construct surfaces with *many* components (\geq 30) coming from walls in the $c \in (r, \frac{1}{2})$ region

Applications: Classification

Theorem (Ascher-D-Liu)

The only canonical Gorenstein degenerations of \mathbb{P}^3 are \mathbb{P}^3 , $C(Q, \mathcal{O}_Q(2))$ for Q a smooth quadric surface, $\mathbb{P}(1,1,2,4)$, and X_u .

Method of proof: wall crossing for pairs (\mathbb{P}^3 , cS_4).

- **1** Any such degeneration X must appear in a pair $[(X,(1-\epsilon)D_X)]\in\mathcal{M}_{1-\epsilon}$ for D_X some anticanonical section
- ② Study all walls as c increases from 0 to 1; for $c \ll 1$: $\mathcal{M}_c \cong \mathsf{GIT}$ of quartic surfaces.
- **9** Perform explicit computations of replacements of pairs that become unstable to find all \mathbb{C} -points of $\mathcal{M}_{1-\epsilon}$.

Can construct other interesting (non-canonical) degenerations of \mathbb{P}^3 via wall crossing for (\mathbb{P}^3, cS_5) . What about other Fanos?

Applications: complete subvarieties

Wall crossing can also turn hard problems into other hard problems.

Vague question

Let $\mathcal{M}^{sm} \subset \mathcal{M}$ be the locus parametrizing smooth varieties. Do there exist complete subvarieties of \mathcal{M}^{sm} ?

Precise question

Does there exist a complete subvariety of \mathcal{M}_g of dimension g-2? (Open for g>3, Oort's Conjecture.)

Applications: complete subvarieties

- For g=3: wall crossing $\mathbf{M}_3=M_{1-\epsilon} \dashrightarrow M_{\epsilon}=\mathsf{GIT}$ of quartic plane curves $=\mathbb{P}(H^0(\mathbb{P}^2,\mathcal{O}(4)))//\mathbb{P}GL_3$.
 - Can show: any complete curve in \mathcal{M}_3 must map to a complete curve in the GIT moduli space only intersecting the singular locus in the double conic.
 - Find: a curve in $\mathbb{P}(H^0(\mathbb{P}^2, \mathcal{O}(4)))$ intersecting the discriminant divisor only in the locus of double conics. What are these curves?
- Similarly for \mathbf{M}_4 : one can show there exist nontrivial smooth families of (2,3) complete intersections in \mathbb{P}^3 over complete curves and describe families over complete surfaces (if they exist). What are these families?

Thank you!