

K-moduli of Fano threefolds via moduli continuity method

Junyan Zhao

Simons Conference on Moduli of Varieties

University of California San Diego

January 17, 2025

K-moduli theorem

K-moduli theorem

Theorem (**K-moduli theorem**; Alper, Blum, Halpern-Leistner, Jiang, Li, Liu, Wang, Xu, Zhuang, etc.)

Fix a positive integer n and a rational number $V > 0$. Consider the moduli pseudo-functor sending a base scheme S to

$$\left\{ \mathcal{X}/S \left| \begin{array}{l} \mathcal{X}/S \text{ is a family of } \mathbb{Q}\text{-Fano varieties,} \\ \text{each fiber } \mathcal{X}_s \text{ is } K\text{-semistable, and} \\ \dim \mathcal{X}_t = n \text{ and } (-K_{\mathcal{X}_t})^n = V. \end{array} \right. \right\}.$$

Then there is an Artin stack, denoted by $\mathcal{M}_{n,V}^K$, of finite type over \mathbb{C} which represents the pseudo-functor.

K-moduli theorem

Theorem (K-moduli theorem cont.)

- ▶ *The \mathbb{C} -points of $\mathcal{M}_{n,V}^K$ parameterize n -dimensional K -semistable \mathbb{Q} -Fano varieties X of volume V .*

K-moduli theorem

Theorem (K-moduli theorem cont.)

- ▶ *The \mathbb{C} -points of $\mathcal{M}_{n,V}^K$ parameterize n -dimensional K -semistable \mathbb{Q} -Fano varieties X of volume V .*
- ▶ *The Artin stack $\mathcal{M}_{n,V}^K$ admits a separated good moduli space $\overline{\mathcal{M}}_{n,V}^K$, which is a projective scheme.*

K-moduli theorem

Theorem (K-moduli theorem cont.)

- ▶ *The \mathbb{C} -points of $\mathcal{M}_{n,V}^K$ parameterize n -dimensional K -semistable \mathbb{Q} -Fano varieties X of volume V .*
- ▶ *The Artin stack $\mathcal{M}_{n,V}^K$ admits a separated good moduli space $\overline{\mathcal{M}}_{n,V}^K$, which is a projective scheme.*
- ▶ *The \mathbb{C} -points of $\overline{\mathcal{M}}_{n,V}^K$ parameterize n -dimensional K -polystable \mathbb{Q} -Fano varieties X of volume V .*

K-moduli theorem

Theorem (K-moduli theorem cont.)

- ▶ *The \mathbb{C} -points of $\mathcal{M}_{n,V}^K$ parameterize n -dimensional K -semistable \mathbb{Q} -Fano varieties X of volume V .*
- ▶ *The Artin stack $\mathcal{M}_{n,V}^K$ admits a separated good moduli space $\overline{\mathcal{M}}_{n,V}^K$, which is a projective scheme.*
- ▶ *The \mathbb{C} -points of $\overline{\mathcal{M}}_{n,V}^K$ parameterize n -dimensional K -polystable \mathbb{Q} -Fano varieties X of volume V .*
- ▶ *The Chow-Mumford (abbr. CM) \mathbb{Q} -line bundle λ_{CM} on $\mathcal{M}_{n,V}^K$ descends to an ample \mathbb{Q} -line bundle Λ_{CM} on $\overline{\mathcal{M}}_{n,V}^K$.*

Question

How can we describe components of $\overline{M}_{n,V}^K$ explicitly?

Question

How can we describe components of $\overline{M}_{n,V}^K$ explicitly?

Goal

Moduli continuity method, with two highlighted examples of Fano threefolds.

General strategy (Step 0)

Prove \mathcal{M}^K is non-empty.

General strategy (Step 0)

Prove \mathcal{M}^K is non-empty.

In other words, show that one member in the family is K -semistable, and hence a general member is K -semistable by the openness of K -(semi)stability.

General strategy (Step 0)

Prove \mathcal{M}^K is non-empty.

In other words, show that one member in the family is K -semistable, and hence a general member is K -semistable by the openness of K -(semi)stability.

This is usually done by equivariant method and δ -invariant estimates.

General strategy (Step 1)

General strategy (Step 1)

A priori estimate on singularities of $X \in \mathcal{M}^K$.

General strategy (Step 1)

A priori estimate on singularities of $X \in \mathcal{M}^K$.

Theorem (Liu'16)

Let X be an n -dimensional K -semistable Fano variety, and $x \in X$ a closed point. Then

$$\frac{\text{vol}(X)}{\text{vol}(\mathbb{P}^n)} \leq \frac{\widehat{\text{vol}}(x, X)}{\widehat{\text{vol}}(0, \mathbb{P}^n)}.$$

General strategy (Step 1)

Proposition

Let X be a (smoothable) K -semistable (weak) Fano threefold, and L be a \mathbb{Q} -Cartier Weil divisor.

General strategy (Step 1)

Proposition

Let X be a (smoothable) K -semistable (weak) Fano threefold, and L be a \mathbb{Q} -Cartier Weil divisor. Assume (X, L) can deform \mathbb{Q} -Cartierly to a smoothing.

General strategy (Step 1)

Proposition

Let X be a (smoothable) K -semistable (weak) Fano threefold, and L be a \mathbb{Q} -Cartier Weil divisor. Assume (X, L) can deform \mathbb{Q} -Cartierly to a smoothing. Then L is Cartier if

$$\text{vol}(X) \geq 20.$$

General strategy (Step 1)

Proposition

Let X be a (smoothable) K -semistable (weak) Fano threefold, and L be a \mathbb{Q} -Cartier Weil divisor. Assume (X, L) can deform \mathbb{Q} -Cartierly to a smoothing. Then L is Cartier if

$$\text{vol}(X) \geq 20.$$

In particular, X is Gorenstein canonical if the inequality holds.

General strategy (Step 2)

General strategy (Step 2)

Understand geometry of X .

General strategy (Step 2)

Understand geometry of X .

Example

linear series $|L|$, anticanonical divisors, elephants, K3 surfaces, etc.

General strategy (Step 2)

Understand geometry of X .

Example

linear series $|L|$, anticanonical divisors, elephants, K3 surfaces, etc.

Goal

- ▶ Show that varieties on the boundary share similar properties with generic one.

General strategy (Step 2)

Understand geometry of X .

Example

linear series $|L|$, anticanonical divisors, elephants, K3 surfaces, etc.

Goal

- ▶ Show that varieties on the boundary share similar properties with generic one.
- ▶ Put all $X \in \mathcal{M}^K$ in a suitable parameter space W .

General strategy (Step 3)

General strategy (Step 3)

Compute λ_{CM} on $\mathcal{X} \rightarrow W$, and then identify

$$\overline{M}^K \simeq \overline{M}^{\text{GIT}} = W //_{\lambda_{\text{CM}}} G.$$

General strategy (Step 3)

Compute λ_{CM} on $\mathcal{X} \rightarrow W$, and then identify

$$\overline{M}^K \simeq \overline{M}^{\text{GIT}} = W //_{\lambda_{\text{CM}}} G.$$

- This is usually where the **properness** of \overline{M}^K comes in.

Fano threefolds №2.15

Fano threefolds №2.15

For any $X \in \mathcal{M}_{\text{№2.15}}^K$, choose a smoothing $\mathcal{X} \rightarrow T$ with $\mathcal{X}_0 \simeq X$.

Fano threefolds №2.15

For any $X \in \mathcal{M}_{\text{№2.15}}^K$, choose a smoothing $\mathcal{X} \rightarrow T$ with $\mathcal{X}_0 \simeq X$.

- ▶ For $t \neq 0$, \mathcal{X}_t is a smooth Fano №2.15 with the Sarkisov link structure

Fano threefolds №2.15

For any $X \in \mathcal{M}_{\text{№2.15}}^K$, choose a smoothing $\mathcal{X} \rightarrow T$ with $\mathcal{X}_0 \simeq X$.

- ▶ For $t \neq 0$, \mathcal{X}_t is a smooth Fano №2.15 with the Sarkisov link structure

$$\begin{array}{ccc} & \mathcal{X}_t & \\ \phi_t = |H_t| \swarrow & & \searrow \psi_t = |L_t| \\ \mathbb{P}^3 & \dashrightarrow & \mathcal{V}_t \subseteq \mathbb{P}^4. \end{array}$$

Fano threefolds №2.15

For any $X \in \mathcal{M}_{\text{№2.15}}^K$, choose a smoothing $\mathcal{X} \rightarrow T$ with $\mathcal{X}_0 \simeq X$.

- ▶ For $t \neq 0$, \mathcal{X}_t is a smooth Fano №2.15 with the Sarkisov link structure

$$\begin{array}{ccc} & \mathcal{X}_t & \\ \phi_t = |H_t| \swarrow & & \searrow \psi_t = |L_t| \\ \mathbb{P}^3 & \dashrightarrow & \mathcal{V}_t \subseteq \mathbb{P}^4. \end{array}$$

- ▶ ϕ_t is the blow-up of \mathbb{P}^3 along a $(2, 3)$ -c.i. curve C ;

Fano threefolds №2.15

For any $X \in \mathcal{M}_{\text{№2.15}}^K$, choose a smoothing $\mathcal{X} \rightarrow T$ with $\mathcal{X}_0 \simeq X$.

- ▶ For $t \neq 0$, \mathcal{X}_t is a smooth Fano №2.15 with the Sarkisov link structure

$$\begin{array}{ccc} & \mathcal{X}_t & \\ \phi_t = |H_t| \swarrow & & \searrow \psi_t = |L_t| \\ \mathbb{P}^3 & \dashrightarrow & \mathcal{V}_t \subseteq \mathbb{P}^4. \end{array}$$

- ▶ ϕ_t is the blow-up of \mathbb{P}^3 along a $(2, 3)$ -c.i. curve C ;
- ▶ ψ_t is the blow-up at a node of a singular cubic hypersurface in \mathbb{P}^4 , which contracts the unique quadric containing C ;

Fano threefolds №2.15

For any $X \in \mathcal{M}_{\text{№2.15}}^K$, choose a smoothing $\mathcal{X} \rightarrow T$ with $\mathcal{X}_0 \simeq X$.

- ▶ For $t \neq 0$, \mathcal{X}_t is a smooth Fano №2.15 with the Sarkisov link structure

$$\begin{array}{ccc} & \mathcal{X}_t & \\ \phi_t = |H_t| \swarrow & & \searrow \psi_t = |L_t| \\ \mathbb{P}^3 & \dashrightarrow & \mathcal{V}_t \subseteq \mathbb{P}^4. \end{array}$$

- ▶ ϕ_t is the blow-up of \mathbb{P}^3 along a $(2, 3)$ -c.i. curve C ;
- ▶ ψ_t is the blow-up at a node of a singular cubic hypersurface in \mathbb{P}^4 , which contracts the unique quadric containing C ;
- ▶ Parameter space: $\mathbb{P}\mathcal{E} \rightarrow \mathbb{P}^9$;

Fano threefolds №2.15

For any $X \in \mathcal{M}_{\text{№2.15}}^K$, choose a smoothing $\mathcal{X} \rightarrow T$ with $\mathcal{X}_0 \simeq X$.

- ▶ For $t \neq 0$, \mathcal{X}_t is a smooth Fano №2.15 with the Sarkisov link structure

$$\begin{array}{ccc} & \mathcal{X}_t & \\ \phi_t = |H_t| \swarrow & & \searrow \psi_t = |L_t| \\ \mathbb{P}^3 & \dashrightarrow & \mathcal{V}_t \subseteq \mathbb{P}^4. \end{array}$$

- ▶ ϕ_t is the blow-up of \mathbb{P}^3 along a $(2, 3)$ -c.i. curve C ;
- ▶ ψ_t is the blow-up at a node of a singular cubic hypersurface in \mathbb{P}^4 , which contracts the unique quadric containing C ;
- ▶ Parameter space: $\mathbb{P}\mathcal{E} \rightarrow \mathbb{P}^9$;
- ▶ Compute CM line bundle on $\mathbb{P}\mathcal{E}$: $N_t = \xi + t\eta$.

Fano threefolds №2.15

Fano threefolds №2.15

Theorem (Liu-Z.'24)

Let $t_0 = \frac{22}{51}$. Then one has

$$\overline{M}_{\text{№2.15}}^K \simeq \overline{M}^{\text{GIT}}(t_0) = \mathbb{P}\mathcal{E} \mathbin{\!/\mkern-5mu/\!}_{t_0} \mathsf{PGL}(4).$$

Fano threefolds №2.15

Theorem (Liu–Z.'24)

Let $t_0 = \frac{22}{51}$. Then one has

$$\overline{M}_{\text{№2.15}}^K \simeq \overline{M}^{\text{GIT}}(t_0) = \mathbb{P}\mathcal{E} \mathbin{\!/\mkern-5mu/\!}_{t_0} \mathsf{PGL}(4).$$

Corollary (Liu–Z.'24, Casalaina-Martin–Jensen–Laza'14)

There is a natural isomorphism

$$\overline{M}_{\text{№2.15}}^K \simeq \overline{M}_4(\alpha_0),$$

Fano threefolds №2.15

Theorem (Liu–Z.'24)

Let $t_0 = \frac{22}{51}$. Then one has

$$\overline{M}_{\text{№2.15}}^K \simeq \overline{M}^{\text{GIT}}(t_0) = \mathbb{P}\mathcal{E} \mathbin{\!/\mkern-5mu/\!}_{t_0} \mathsf{PGL}(4).$$

Corollary (Liu–Z.'24, Casalaina-Martin–Jensen–Laza'14)

There is a natural isomorphism

$$\overline{M}_{\text{№2.15}}^K \simeq \overline{M}_4(\alpha_0),$$

where the latter is the birational model of \overline{M}_4 in Hassett-Keel program for any $\alpha_0 \in (\frac{1}{2}, \frac{23}{44})$.

Proof of the theorem

Proof of the theorem

- ▶ (Step 0) Done in the book *The Calabi problem for Fano threefolds*.

Proof of the theorem

- ▶ (Step 0) Done in the book *The Calabi problem for Fano threefolds*.
- ▶ (Step 1 & 2) Later.

Proof of the theorem

- ▶ (Step 0) Done in the book *The Calabi problem for Fano threefolds*.
- ▶ (Step 1 & 2) Later.
- ▶ (Step 3) Compute λ_{CM} : intersection theory.

Proof of the theorem

- ▶ (Step 0) Done in the book *The Calabi problem for Fano threefolds*.
- ▶ (Step 1 & 2) Later.
- ▶ (Step 3) Compute λ_{CM} : intersection theory.

Remark

The K-stability of smooth Fano №2.15 is proved by Duarte–Guerreiro–Giovenzana–Viswanathan using *Abban–Zhuang's method*.

Proof of the theorem

Proposition (Liu-Z'24)

Any $X \in \mathcal{M}_{\mathbb{N}^2, 15}^K$ admits a Sarkisov link structure

$$\begin{array}{ccc} & X & \\ \phi = |H| & \swarrow & \searrow \psi = |L| \\ \mathbb{P}^3 & \dashrightarrow & V \subseteq \mathbb{P}^4, \end{array}$$

Proof of the theorem

Proposition (Liu-Z'24)

Any $X \in \mathcal{M}_{\mathbb{N}^2, 15}^K$ admits a Sarkisov link structure

$$\begin{array}{ccc} & X & \\ \phi = |H| & \swarrow & \searrow \psi = |L| \\ \mathbb{P}^3 & \dashrightarrow & V \subseteq \mathbb{P}^4, \end{array}$$

where

- ▶ H (resp. L) is the degeneration of H_t (resp. L_t).

Proof of the theorem

Proposition (Liu-Z'24)

Any $X \in \mathcal{M}_{\mathbb{N}^2, 15}^K$ admits a Sarkisov link structure

$$\begin{array}{ccc} & X & \\ \phi = |H| \swarrow & & \searrow \psi = |L| \\ \mathbb{P}^3 & \dashrightarrow & V \subseteq \mathbb{P}^4, \end{array}$$

where

- ▶ H (resp. L) is the degeneration of H_t (resp. L_t).
- ▶ ϕ is the blow-up of \mathbb{P}^3 along a (possibly singular) $(2, 3)$ -complete intersection curve.

Proof of the theorem

Proposition (Liu-Z'24)

Any $X \in \mathcal{M}_{\mathbb{N}^2, 15}^K$ admits a Sarkisov link structure

$$\begin{array}{ccc} & X & \\ \phi = |H| \swarrow & & \searrow \psi = |L| \\ \mathbb{P}^3 & \dashrightarrow & V \subseteq \mathbb{P}^4, \end{array}$$

where

- ▶ H (resp. L) is the degeneration of H_t (resp. L_t).
- ▶ ϕ is the blow-up of \mathbb{P}^3 along a (possibly singular) $(2, 3)$ -complete intersection curve.
- ▶ ψ is the blow-up at a double point of Gorenstein cubic hypersurface in \mathbb{P}^4 .

Step 1 for $\overline{M}_{\mathbb{N}2.15}^K$

Step 1 for $\overline{M}_{\mathbb{N}2.15}^K$

- ▶ As $\text{vol}(-K_X) = 22 \geq 20$, volume comparison applies.

Step 1 for $\overline{M}_{\mathbb{N}2.15}^K$

- ▶ As $\text{vol}(-K_X) = 22 \geq 20$, volume comparison applies.
- ▶ **However** \mathcal{X} might not be \mathbb{Q} -factorial (\mathcal{L} not \mathbb{Q} -Cartier).

Step 1 for $\overline{M}_{\mathbb{N}2.15}^K$

- ▶ As $\text{vol}(-K_X) = 22 \geq 20$, volume comparison applies.
- ▶ **However** \mathcal{X} might not be \mathbb{Q} -factorial (\mathcal{L} not \mathbb{Q} -Cartier).
- ▶ Solution: $\widetilde{\mathcal{X}} \rightarrow \mathcal{X}$ small \mathbb{Q} -Cartierization s.t. $\widetilde{\mathcal{D}}$ is ample over \mathcal{X} . The followings hold.

Step 1 for $\overline{M}_{\mathbb{N}2.15}^K$

- ▶ As $\text{vol}(-K_X) = 22 \geq 20$, volume comparison applies.
- ▶ **However** \mathcal{X} might not be \mathbb{Q} -factorial (\mathcal{L} not \mathbb{Q} -Cartier).
- ▶ Solution: $\widetilde{\mathcal{X}} \rightarrow \mathcal{X}$ small \mathbb{Q} -Cartierization s.t. $\widetilde{\mathcal{Q}}$ is ample over \mathcal{X} . The followings hold.
 - (1) $-K_{\widetilde{\mathcal{X}}/T} + \epsilon \widetilde{\mathcal{Q}} = 2\widetilde{\mathcal{L}} - (1 - \epsilon)\widetilde{\mathcal{Q}}$ is ample for $0 < \epsilon \ll 1$;

Step 1 for $\overline{M}_{\mathbb{N}2.15}^K$

- ▶ As $\text{vol}(-K_X) = 22 \geq 20$, volume comparison applies.
- ▶ **However** \mathcal{X} might not be \mathbb{Q} -factorial (\mathcal{L} not \mathbb{Q} -Cartier).
- ▶ Solution: $\widetilde{\mathcal{X}} \rightarrow \mathcal{X}$ small \mathbb{Q} -Cartierization s.t. $\widetilde{\mathcal{Q}}$ is ample over \mathcal{X} . The followings hold.
 - (1) $-K_{\widetilde{\mathcal{X}}/T} + \epsilon \widetilde{\mathcal{Q}} = 2\widetilde{\mathcal{L}} - (1 - \epsilon)\widetilde{\mathcal{Q}}$ is ample for $0 < \epsilon \ll 1$;
 - (2) $\widetilde{\mathcal{L}}$ is \mathbb{Q} -Cartier, hence Cartier;

Step 1 for $\overline{M}_{\mathbb{N}2.15}^K$

- ▶ As $\text{vol}(-K_X) = 22 \geq 20$, volume comparison applies.
- ▶ **However** \mathcal{X} might not be \mathbb{Q} -factorial (\mathcal{L} not \mathbb{Q} -Cartier).
- ▶ Solution: $\widetilde{\mathcal{X}} \rightarrow \mathcal{X}$ small \mathbb{Q} -Cartierization s.t. $\widetilde{\mathcal{Q}}$ is ample over \mathcal{X} . The followings hold.
 - (1) $-K_{\widetilde{\mathcal{X}}/T} + \epsilon \widetilde{\mathcal{Q}} = 2\widetilde{\mathcal{L}} - (1 - \epsilon)\widetilde{\mathcal{Q}}$ is ample for $0 < \epsilon \ll 1$;
 - (2) $\widetilde{\mathcal{L}}$ is \mathbb{Q} -Cartier, hence Cartier;
 - (3) $\widetilde{X} := \widetilde{\mathcal{X}}_0$ is Gorenstein canonical weak Fano;

Step 1 for $\overline{M}_{\mathbb{N}2.15}^K$

- ▶ As $\text{vol}(-K_X) = 22 \geq 20$, volume comparison applies.
- ▶ **However** \mathcal{X} might not be \mathbb{Q} -factorial (\mathcal{L} not \mathbb{Q} -Cartier).
- ▶ Solution: $\widetilde{\mathcal{X}} \rightarrow \mathcal{X}$ small \mathbb{Q} -Cartierization s.t. $\widetilde{\mathcal{Q}}$ is ample over \mathcal{X} . The followings hold.
 - (1) $-K_{\widetilde{\mathcal{X}}/T} + \epsilon \widetilde{\mathcal{Q}} = 2\widetilde{\mathcal{L}} - (1 - \epsilon)\widetilde{\mathcal{Q}}$ is ample for $0 < \epsilon \ll 1$;
 - (2) $\widetilde{\mathcal{L}}$ is \mathbb{Q} -Cartier, hence Cartier;
 - (3) $\widetilde{X} := \widetilde{\mathcal{X}}_0$ is Gorenstein canonical weak Fano;
 - (4) $\widetilde{L} := \widetilde{\mathcal{L}}|_{\widetilde{X}}$, $\widetilde{Q} := \widetilde{\mathcal{Q}}|_{\widetilde{X}}$, $\widetilde{H} := \widetilde{\mathcal{H}}|_{\widetilde{X}}$, and $\widetilde{E} := \widetilde{\mathcal{E}}|_{\widetilde{X}}$ are all Cartier.

Step 2 for $\overline{M}_{\mathbb{N}2.15}^K$

Step 2 for $\overline{M}_{\mathbb{N}2.15}^K$

Show that $|\tilde{L}|$ is base-point-free and defines a morphism

$$\tilde{X} \xrightarrow{|\tilde{L}|} V \subseteq \mathbb{P}^4.$$

Step 2 for $\overline{M}_{\mathbb{N}2.15}^K$

Show that $|\tilde{L}|$ is base-point-free and defines a morphism

$$\tilde{X} \xrightarrow{|\tilde{L}|} V \subseteq \mathbb{P}^4.$$

- ▶ Key point: show \tilde{L} is nef (it is automatically big).

Step 2 for $\overline{M}_{\text{N}2.15}^K$

Show that $|\tilde{L}|$ is base-point-free and defines a morphism

$$\tilde{X} \xrightarrow{|\tilde{L}|} V \subseteq \mathbb{P}^4.$$

- ▶ Key point: show \tilde{L} is nef (it is automatically big).
- ▶ Idea: take $S \in | -K_{\tilde{X}} |$ a general elephant (K3 surface); first show $\tilde{L}|_S$ is nef, then lift sections.

Step 2 for $\overline{M}_{\mathbb{N}2.15}^K$ (nefness of $\widetilde{L}|_S$)

Step 2 for $\overline{M}_{\mathbb{N}2.15}^K$ (nefness of $\widetilde{L}|_S$)

- ▶ Deform $S = S_0$ to $S_t \in | - K_{\mathcal{X}_t} |$.

Step 2 for $\overline{M}_{\mathbb{N}2.15}^K$ (nefness of $\widetilde{L}|_S$)

- ▶ Deform $S = S_0$ to $S_t \in | - K_{\mathcal{X}_t} |$.
- ▶ $S_t \rightarrow S'_t \subseteq \mathbb{P}^4$ contract Q_t to p_t , a singular K3 surface of degree 6, where p_t is an ODP.

Step 2 for $\overline{M}_{\mathbb{N} 2.15}^K$ (nefness of $\widetilde{L}|_S$)

- ▶ Deform $S = S_0$ to $S_t \in | - K_{\mathcal{X}_t} |$.
- ▶ $S_t \rightarrow S'_t \subseteq \mathbb{P}^4$ contract Q_t to p_t , a singular K3 surface of degree 6, where p_t is an ODP.
- ▶ $(S_t, 2L_t - (1 - \epsilon)Q_t) \rightsquigarrow (S_0, 2L_0 - (1 - \epsilon)Q_0)$ as degeneration of polarized K3 surfaces.

Step 2 for $\overline{M}_{\mathbb{N}2.15}^K$ (nefness of $\widetilde{L}|_S$)

- ▶ Deform $S = S_0$ to $S_t \in | - K_{\mathcal{X}_t} |$.
- ▶ $S_t \rightarrow S'_t \subseteq \mathbb{P}^4$ contract Q_t to p_t , a singular K3 surface of degree 6, where p_t is an ODP.
- ▶ $(S_t, 2L_t - (1 - \epsilon)Q_t) \rightsquigarrow (S_0, 2L_0 - (1 - \epsilon)Q_0)$ as degeneration of polarized K3 surfaces.
- ▶ (Moduli of lattice-polarized K3 surfaces) If $S'_t \rightsquigarrow S'_0$ as degeneration of degree 6 K3, then $S_0 \simeq \text{Bl}_{p_0} S'_0$ and hence $\widetilde{L}|_S$ is nef (as the pullback of L_0 from S_0).

Step 2 for $\overline{M}_{\mathbb{N}2.15}^K$ (nefness of \widetilde{L})

Step 2 for $\overline{M}_{\mathbb{N}2.15}^K$ (nefness of \widetilde{L})

- ▶ Not hard to show that $|k\widetilde{L}|_S = |k\widetilde{L}|_S$ for $k=1,2$; and that $2\widetilde{L}|_S$ is base-point-free.

Step 2 for $\overline{M}_{\mathbb{N} 2.15}^K$ (nefness of \widetilde{L})

- ▶ Not hard to show that $|k\widetilde{L}|_S = |k\widetilde{L}|_S$ for $k=1,2$; and that $2\widetilde{L}|_S$ is base-point-free.
- ▶ Thus $\text{Bs}|2\widetilde{L}| = \text{points} \cup g\text{-exceptional subsets}$, where $g : \widetilde{X} \rightarrow X$ is the birational modification.

Step 2 for $\overline{M}_{\mathbb{N} 2.15}^K$ (nefness of \tilde{L})

- ▶ Not hard to show that $|k\tilde{L}|_S = |k\tilde{L}|_S$ for $k=1,2$; and that $2\tilde{L}|_S$ is base-point-free.
- ▶ Thus $\text{Bs}|2\tilde{L}| = \text{points} \cup g\text{-exceptional subsets}$, where $g : \tilde{X} \rightarrow X$ is the birational modification.
- ▶ Since $\tilde{L} = \frac{1}{2}(-K_{\tilde{X}} + Q)$ is g -ample, it is nef.

Moduli of vector bundles and bundle stable pairs

Let C be a smooth projective curve of genus $g \geq 2$, and $\Lambda \in \text{Pic}^{2g-1}(C)$ a line bundle.

Moduli of vector bundles and bundle stable pairs

Let C be a smooth projective curve of genus $g \geq 2$, and $\Lambda \in \text{Pic}^{2g-1}(C)$ a line bundle.

- ▶ $\overline{M}_C(2, \Lambda)$: moduli space of rank 2 stable vector bundles on C with fixed determinant Λ .

Moduli of vector bundles and bundle stable pairs

Let C be a smooth projective curve of genus $g \geq 2$, and $\Lambda \in \text{Pic}^{2g-1}(C)$ a line bundle.

- ▶ $\overline{M}_C(2, \Lambda)$: moduli space of rank 2 stable vector bundles on C with fixed determinant Λ .
- ▶ $\overline{M}_C(2, \Lambda)$ is a Fano manifold of dimension $3g - 3$, Fano index 2, and Picard rank 1.

Moduli of vector bundles and bundle stable pairs

Let C be a smooth projective curve of genus $g \geq 2$, and $\Lambda \in \text{Pic}^{2g-1}(C)$ a line bundle.

- ▶ $\overline{M}_C(2, \Lambda)$: moduli space of rank 2 stable vector bundles on C with fixed determinant Λ .
- ▶ $\overline{M}_C(2, \Lambda)$ is a Fano manifold of dimension $3g - 3$, Fano index 2, and Picard rank 1.
- ▶ (Thaddeus'94) Let $\sigma \in \mathbb{Q}_{>0}$ and $\overline{N}_C(\sigma, \Lambda)$ be the moduli space of σ -semistable pairs (E, ϕ) , where E is a rank 2 vector bundle with determinant Λ and $\phi \in H^0(C, E)$.

Moduli of vector bundles and bundle stable pairs

Let C be a smooth projective curve of genus $g \geq 2$, and $\Lambda \in \text{Pic}^{2g-1}(C)$ a line bundle.

- ▶ $\overline{M}_C(2, \Lambda)$: moduli space of rank 2 stable vector bundles on C with fixed determinant Λ .
- ▶ $\overline{M}_C(2, \Lambda)$ is a Fano manifold of dimension $3g - 3$, Fano index 2, and Picard rank 1.
- ▶ (Thaddeus'94) Let $\sigma \in \mathbb{Q}_{>0}$ and $\overline{N}_C(\sigma, \Lambda)$ be the moduli space of σ -semistable pairs (E, ϕ) , where E is a rank 2 vector bundle with determinant Λ and $\phi \in H^0(C, E)$.
- ▶ $\overline{N}_C(\sigma, \Lambda)$ is non-empty if and only if $\sigma \leq d - \frac{1}{2}$

Moduli of vector bundles and bundle stable pairs

Moduli of vector bundles and bundle stable pairs

- ▶ For each $i = 0, \dots, g - 1$, $\overline{N}_C(\sigma, \Lambda)$ is independent of $\sigma \in (g - \frac{1}{2} - i - 1, g - \frac{1}{2} - i)$, denoted by $\overline{N}_{C,i}(\Lambda)$.

Moduli of vector bundles and bundle stable pairs

- ▶ For each $i = 0, \dots, g - 1$, $\overline{N}_C(\sigma, \Lambda)$ is independent of $\sigma \in (g - \frac{1}{2} - i - 1, g - \frac{1}{2} - i)$, denoted by $\overline{N}_{C,i}(\Lambda)$.
- ▶ **(Boundary model I)** There is a natural isomorphism

$$\overline{N}_{C,0}(\Lambda) \simeq \mathbb{P}H^0(K_C \otimes \Lambda)^* \simeq \mathbb{P}^{3g-3},$$

under which C is embedded into $\overline{N}_{C,0}(\Lambda)$ via $|K_C \otimes \Lambda|$.

Moduli of vector bundles and bundle stable pairs

- ▶ For each $i = 0, \dots, g-1$, $\overline{N}_C(\sigma, \Lambda)$ is independent of $\sigma \in (g - \frac{1}{2} - i - 1, g - \frac{1}{2} - i)$, denoted by $\overline{N}_{C,i}(\Lambda)$.
- ▶ (Boundary model I) There is a natural isomorphism

$$\overline{N}_{C,0}(\Lambda) \simeq \mathbb{P}H^0(K_C \otimes \Lambda)^* \simeq \mathbb{P}^{3g-3},$$

under which C is embedded into $\overline{N}_{C,0}(\Lambda)$ via $|K_C \otimes \Lambda|$.

- ▶ (Boundary model II) There is a natural surjective Abel-Jacobi map

$$\overline{N}_{C,g-1}(\Lambda) \longrightarrow \overline{M}_C(2, \Lambda),$$

whose fiber over $[E]$ is $\mathbb{P}H^0(C, E)$.

Moduli of vector bundles and bundle stable pairs

- ▶ For each $i = 0, \dots, g-1$, $\overline{N}_C(\sigma, \Lambda)$ is independent of $\sigma \in (g - \frac{1}{2} - i - 1, g - \frac{1}{2} - i)$, denoted by $\overline{N}_{C,i}(\Lambda)$.
- ▶ (Boundary model I) There is a natural isomorphism

$$\overline{N}_{C,0}(\Lambda) \simeq \mathbb{P}H^0(K_C \otimes \Lambda)^* \simeq \mathbb{P}^{3g-3},$$

under which C is embedded into $\overline{N}_{C,0}(\Lambda)$ via $|K_C \otimes \Lambda|$.

- ▶ (Boundary model II) There is a natural surjective Abel-Jacobi map

$$\overline{N}_{C,g-1}(\Lambda) \longrightarrow \overline{M}_C(2, \Lambda),$$

whose fiber over $[E]$ is $\mathbb{P}H^0(C, E)$.

- ▶ (Intermediate models) There is a divisorial contraction $\phi : \overline{N}_{C,1}(\Lambda) \rightarrow \overline{N}_{C,0}(\Lambda)$ which blows up $\overline{N}_{C,0}(\Lambda)$ along C . All the other intermediate moduli are connected by flips.

Wall crossing

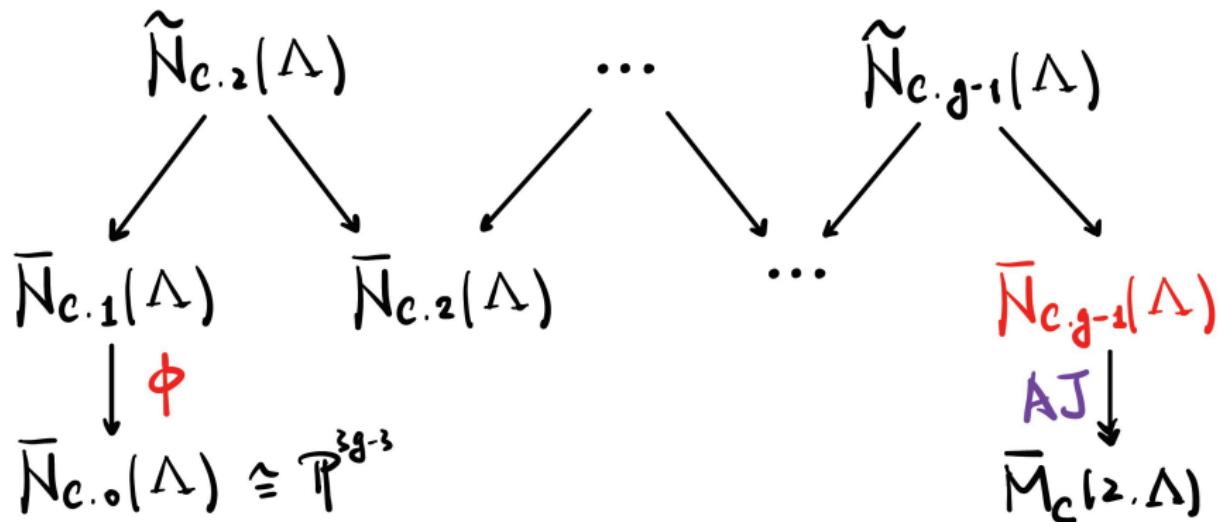


Figure: Wall crossing of Thaddeus' moduli of stable pairs

Example (g=2)

Example (g=2)

- ▶ C : smooth genus two curve, $\Lambda \in \text{Pic}^3(C)$

Example (g=2)

- ▶ C : smooth genus two curve, $\Lambda \in \text{Pic}^3(C)$
- ▶ $|K_C \otimes \Lambda| : C \hookrightarrow \mathbb{P}H^0(C, K_C \otimes \Lambda)^* \simeq \mathbb{P}^3$

Example (g=2)

- ▶ C : smooth genus two curve, $\Lambda \in \text{Pic}^3(C)$
- ▶ $|K_C \otimes \Lambda| : C \hookrightarrow \mathbb{P}H^0(C, K_C \otimes \Lambda)^* \simeq \mathbb{P}^3$
- ▶ $M := \overline{M}_C(2, \Lambda)$ is a smooth quartic del Pezzo threefold (i.e. (2, 2)-complete intersection in \mathbb{P}^5)

Example (g=2)

- ▶ C : smooth genus two curve, $\Lambda \in \text{Pic}^3(C)$
- ▶ $|K_C \otimes \Lambda| : C \hookrightarrow \mathbb{P}H^0(C, K_C \otimes \Lambda)^* \simeq \mathbb{P}^3$
- ▶ $M := \overline{M}_C(2, \Lambda)$ is a smooth quartic del Pezzo threefold (i.e. (2, 2)-complete intersection in \mathbb{P}^5)
- ▶ The Brill–Noether locus B of M which parametrizes vector bundles E with $h^0(E) \geq 2$ is a line;

Example (g=2)

- ▶ C : smooth genus two curve, $\Lambda \in \text{Pic}^3(C)$
- ▶ $|K_C \otimes \Lambda| : C \hookrightarrow \mathbb{P}H^0(C, K_C \otimes \Lambda)^* \simeq \mathbb{P}^3$
- ▶ $M := \overline{M}_C(2, \Lambda)$ is a smooth quartic del Pezzo threefold (i.e. (2, 2)-complete intersection in \mathbb{P}^5)
- ▶ The Brill–Noether locus B of M which parametrizes vector bundles E with $h^0(E) \geq 2$ is a line;
- ▶ There is only one non-trivial moduli of bundle stable pairs

$$\overline{N}_{C,1}(\Lambda) \simeq \text{Bl}_C \mathbb{P}H^1(C, \Lambda^*) \simeq \text{Bl}_B M.$$

Example (g=2)

- ▶ C : smooth genus two curve, $\Lambda \in \text{Pic}^3(C)$
- ▶ $|K_C \otimes \Lambda| : C \hookrightarrow \mathbb{P}H^0(C, K_C \otimes \Lambda)^* \simeq \mathbb{P}^3$
- ▶ $M := \overline{M}_C(2, \Lambda)$ is a smooth quartic del Pezzo threefold (i.e. (2, 2)-complete intersection in \mathbb{P}^5)
- ▶ The Brill–Noether locus B of M which parametrizes vector bundles E with $h^0(E) \geq 2$ is a line;
- ▶ There is only one non-trivial moduli of bundle stable pairs

$$\overline{N}_{C,1}(\Lambda) \simeq \text{Bl}_C \mathbb{P}H^1(C, \Lambda^*) \simeq \text{Bl}_B M.$$

- ▶ The wall-crossing structure coincides with Sarkisov link of Fano family №2.19.

Fano threefolds №2.19

A smooth Fano X threefold in family №2.19 has the Sarkisov link structure

$$\begin{array}{ccc} & \mathcal{X} & \\ \phi=|H| \swarrow & & \searrow \psi=|L| \\ \mathbb{P}^3 & \dashrightarrow & \mathcal{V} \subseteq \mathbb{P}^5. \end{array}$$

Fano threefolds №2.19

A smooth Fano X threefold in family №2.19 has the Sarkisov link structure

$$\begin{array}{ccc} & \mathcal{X} & \\ \phi=|H| \swarrow & & \searrow \psi=|L| \\ \mathbb{P}^3 & \dashrightarrow & \mathcal{V} \subseteq \mathbb{P}^5. \end{array}$$

- ▶ ϕ is the blow-up of \mathbb{P}^3 along a quintic curve C of genus 2.

Fano threefolds №2.19

A smooth Fano X threefold in family №2.19 has the Sarkisov link structure

$$\begin{array}{ccc} & \mathcal{X} & \\ \phi = |H| \swarrow & & \searrow \psi = |L| \\ \mathbb{P}^3 & \dashrightarrow & \mathcal{V} \subseteq \mathbb{P}^5. \end{array}$$

- ▶ ϕ is the blow-up of \mathbb{P}^3 along a quintic curve C of genus 2.
- ▶ ψ is the blow-up of a $(2, 2)$ -complete intersection in \mathbb{P}^5 along a line, which contracts the unique quadric containing C .

Fano threefolds №2.19

A smooth Fano X threefold in family №2.19 has the Sarkisov link structure

$$\begin{array}{ccc} & \mathcal{X} & \\ \phi = |H| \swarrow & & \searrow \psi = |L| \\ \mathbb{P}^3 & \dashrightarrow & \mathcal{V} \subseteq \mathbb{P}^5. \end{array}$$

- ▶ ϕ is the blow-up of \mathbb{P}^3 along a quintic curve C of genus 2.
- ▶ ψ is the blow-up of a $(2, 2)$ -complete intersection in \mathbb{P}^5 along a line, which contracts the unique quadric containing C .
- ▶ Parameter space: a $W := \mathrm{Gr}(2, 18)$ -bundle over $\mathrm{Gr}(2, 6)$;

Fano threefolds №2.19

A smooth Fano X threefold in family №2.19 has the Sarkisov link structure

$$\begin{array}{ccc} & \mathcal{X} & \\ \phi = |H| \swarrow & & \searrow \psi = |L| \\ \mathbb{P}^3 & \dashrightarrow & \mathcal{V} \subseteq \mathbb{P}^5. \end{array}$$

- ▶ ϕ is the blow-up of \mathbb{P}^3 along a quintic curve C of genus 2.
- ▶ ψ is the blow-up of a $(2, 2)$ -complete intersection in \mathbb{P}^5 along a line, which contracts the unique quadric containing C .
- ▶ Parameter space: a $W := \mathrm{Gr}(2, 18)$ -bundle over $\mathrm{Gr}(2, 6)$;
- ▶ Compute CM line bundle on W : $N_t = \xi + t\eta$

Fano threefolds №2.19

Fano threefolds №2.19

Theorem (Z.'24)

Let V be a $(2, 2)$ -complete intersection in \mathbb{P}^5 ,

Fano threefolds №2.19

Theorem (Z.'24)

Let V be a $(2, 2)$ -complete intersection in \mathbb{P}^5 , $\ell \subseteq V$ be a line

Fano threefolds №2.19

Theorem (Z.'24)

Let V be a $(2, 2)$ -complete intersection in \mathbb{P}^5 , $\ell \subseteq V$ be a line, and $X := Bl_{\ell}V$ be the blow-up.

Fano threefolds №2.19

Theorem (Z.'24)

Let V be a $(2, 2)$ -complete intersection in \mathbb{P}^5 , $\ell \subseteq V$ be a line, and $X := Bl_\ell V$ be the blow-up. Then there is a natural isomorphism

$$\overline{M}_{\text{№2.19}}^K \simeq \overline{M}^{\text{GIT}}(\epsilon) := W //_{N_\epsilon} \text{PGL}(6).$$

Fano threefolds №2.19

Theorem (Z.'24)

Let V be a $(2, 2)$ -complete intersection in \mathbb{P}^5 , $\ell \subseteq V$ be a line, and $X := Bl_\ell V$ be the blow-up. Then there is a natural isomorphism

$$\overline{M}_{\text{№2.19}}^K \simeq \overline{M}^{\text{GIT}}(\epsilon) := W //_{N_\epsilon} \text{PGL}(6).$$

1. Every smooth №2.19 is K -stable.

Fano threefolds №2.19

Theorem (Z.'24)

Let V be a $(2, 2)$ -complete intersection in \mathbb{P}^5 , $\ell \subseteq V$ be a line, and $X := Bl_\ell V$ be the blow-up. Then there is a natural isomorphism

$$\overline{M}_{\text{№2.19}}^K \simeq \overline{M}^{\text{GIT}}(\epsilon) := W //_{N_\epsilon} \text{PGL}(6).$$

1. Every smooth №2.19 is K -stable.
2. If X is K -semistable, then V is K -semistable and $\ell \subseteq V^{sm}$.

Fano threefolds №2.19

Theorem (Z.'24)

Let V be a $(2, 2)$ -complete intersection in \mathbb{P}^5 , $\ell \subseteq V$ be a line, and $X := Bl_\ell V$ be the blow-up. Then there is a natural isomorphism

$$\overline{M}_{\text{№2.19}}^K \simeq \overline{M}^{\text{GIT}}(\epsilon) := W //_{N_\epsilon} \text{PGL}(6).$$

1. Every smooth №2.19 is K -stable.
2. If X is K -semistable, then V is K -semistable and $\ell \subseteq V^{sm}$.
3. There is a commutative diagram

$$\begin{array}{ccc} \mathcal{M}_{\text{№2.19}}^K & \longrightarrow & \mathcal{M}_{\text{№1.14}}^K \\ \downarrow & & \downarrow \\ \overline{M}_{\text{№2.19}}^K & \longrightarrow & \overline{M}_{\text{№1.14}}^K \end{array}.$$

Explicit K-moduli open problems

Explicit K-moduli open problems

Let C be a smooth curve of genus $g \geq 3$, $\Lambda \in \text{Pic}^{2g-1}(C)$ be a class, and $\overline{M}_C(2, \Lambda)$ the moduli space of stable vector bundles of rank 2 and determinant Λ on C . Then $\overline{M}_C(2, \Lambda)$ is a Fano manifold of dimension $3g - 3$ and Fano index 2.

Explicit K-moduli open problems

Let C be a smooth curve of genus $g \geq 3$, $\Lambda \in \text{Pic}^{2g-1}(C)$ be a class, and $\overline{M}_C(2, \Lambda)$ the moduli space of stable vector bundles of rank 2 and determinant Λ on C . Then $\overline{M}_C(2, \Lambda)$ is a Fano manifold of dimension $3g - 3$ and Fano index 2.

Question (Donaldson)

Is every $\overline{M}_C(2, \Lambda)$ K-stable?

Explicit K-moduli open problems

Let C be a smooth curve of genus $g \geq 3$, $\Lambda \in \text{Pic}^{2g-1}(C)$ be a class, and $\overline{M}_C(2, \Lambda)$ the moduli space of stable vector bundles of rank 2 and determinant Λ on C . Then $\overline{M}_C(2, \Lambda)$ is a Fano manifold of dimension $3g - 3$ and Fano index 2.

Question (Donaldson)

Is every $\overline{M}_C(2, \Lambda)$ K-stable? Describe the component of the relevant K-moduli space?

Explicit K-moduli open problems

Let C be a smooth curve of genus $g \geq 3$, $\Lambda \in \text{Pic}^{2g-1}(C)$ be a class, and $\overline{M}_C(2, \Lambda)$ the moduli space of stable vector bundles of rank 2 and determinant Λ on C . Then $\overline{M}_C(2, \Lambda)$ is a Fano manifold of dimension $3g - 3$ and Fano index 2.

Question (Donaldson)

Is every $\overline{M}_C(2, \Lambda)$ K-stable? Describe the component of the relevant K-moduli space? Compare it with \overline{M}_g ?

Explicit K-moduli open problems

Let C be a smooth curve of genus $g \geq 3$, $\Lambda \in \text{Pic}^{2g-1}(C)$ be a class, and $\overline{M}_C(2, \Lambda)$ the moduli space of stable vector bundles of rank 2 and determinant Λ on C . Then $\overline{M}_C(2, \Lambda)$ is a Fano manifold of dimension $3g - 3$ and Fano index 2.

Question (Donaldson)

Is every $\overline{M}_C(2, \Lambda)$ K-stable? Describe the component of the relevant K-moduli space? Compare it with \overline{M}_g ?

Let $\overline{N}_C(2, \Lambda)$ be **the** Thaddeus' moduli of stable pairs.

Explicit K-moduli open problems

Let C be a smooth curve of genus $g \geq 3$, $\Lambda \in \text{Pic}^{2g-1}(C)$ be a class, and $\overline{M}_C(2, \Lambda)$ the moduli space of stable vector bundles of rank 2 and determinant Λ on C . Then $\overline{M}_C(2, \Lambda)$ is a Fano manifold of dimension $3g - 3$ and Fano index 2.

Question (Donaldson)

Is every $\overline{M}_C(2, \Lambda)$ K-stable? Describe the component of the relevant K-moduli space? Compare it with \overline{M}_g ?

Let $\overline{N}_C(2, \Lambda)$ be the Thaddeus' moduli of stable pairs.

- ▶ Is every $\overline{N}_C(2, \Lambda)$ K-(semi)stable?

Explicit K-moduli open problems

Let C be a smooth curve of genus $g \geq 3$, $\Lambda \in \text{Pic}^{2g-1}(C)$ be a class, and $\overline{M}_C(2, \Lambda)$ the moduli space of stable vector bundles of rank 2 and determinant Λ on C . Then $\overline{M}_C(2, \Lambda)$ is a Fano manifold of dimension $3g - 3$ and Fano index 2.

Question (Donaldson)

Is every $\overline{M}_C(2, \Lambda)$ K-stable? Describe the component of the relevant K-moduli space? Compare it with \overline{M}_g ?

Let $\overline{N}_C(2, \Lambda)$ be **the** Thaddeus' moduli of stable pairs.

- ▶ Is every $\overline{N}_C(2, \Lambda)$ K-(semi)stable?
- ▶ Describe the component of the relevant K-moduli space?

Explicit K-moduli open problems

Let C be a smooth curve of genus $g \geq 3$, $\Lambda \in \text{Pic}^{2g-1}(C)$ be a class, and $\overline{M}_C(2, \Lambda)$ the moduli space of stable vector bundles of rank 2 and determinant Λ on C . Then $\overline{M}_C(2, \Lambda)$ is a Fano manifold of dimension $3g - 3$ and Fano index 2.

Question (Donaldson)

Is every $\overline{M}_C(2, \Lambda)$ K-stable? Describe the component of the relevant K-moduli space? Compare it with \overline{M}_g ?

Let $\overline{N}_C(2, \Lambda)$ be **the** Thaddeus' moduli of stable pairs.

- ▶ Is every $\overline{N}_C(2, \Lambda)$ K-(semi)stable?
- ▶ Describe the component of the relevant K-moduli space?
- ▶ Is there a natural forgetful morphism from the K-moduli of $\overline{N}_C(2, \Lambda)$ to that of $\overline{M}_C(2, \Lambda)$?

Acknowledgement

Thanks