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K-moduli theorem

Theorem (K-moduli theorem; Alper, Blum, Halpern-Leistner,
Jiang, Li, Liu, Wang, Xu, Zhuang, etc.)

Fix a positive integer n and a rational number V' > 0. Consider
the moduli pseudo-functor sending a base scheme S to

2 /S is a family of Q-Fano varieties,
Z'/S | each fiber Z; is K-semistable, and
dim Z; =n and (—Kg,)" = V.

Then there is an Artin stack, denoted by /\/lff’v, of finite type over
C which represents the pseudo-functor.
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K-moduli theorem

Theorem (K-moduli theorem cont.)

» The C-points of Mff v Pparameterize n-dimensional
K-semistable Q-Fano varieties X of volume V.

» The Artin stack ./\/lff v admits a separated good moduli space

—K o I
M, v, which is a projective scheme.

» The C-points ofﬂiv parameterize n-dimensional
K-polystable Q-Fano varieties X of volume V.

> The Chow-Mumford (abbv. CM) Q-line bundle Acy on MK,

descends to an ample Q-line bundle Acy on Mf V-
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Question
How can we describe components of M, 1, explicitly?

4/25



Question
How can we describe components of M, 1, explicitly?

Goal

Moduli continuity method, with two highlighted examples of Fano
threefolds.
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General strategy (Step 0)

Prove MX is non-empty.
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General strategy (Step 0)

Prove MX is non-empty.
In other words, show that one member in the family is
K-semistable, and hence a general member is K-semistable by the

openness of K-(semi)stability.

This is usually done by equivariant method and §-invariant
estimates.
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General strategy (Step 1)

A priori estimate on singularities of X € MX.
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General strategy (Step 1)

A priori estimate on singularities of X € MX.

Theorem (Liu'16)
Let X be an n-dimensional K-semistable Fano variety, and x € X

a closed point. Then

vol(X) - \75|($,X)

vol(P™) = yol(0,Pn)
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General strategy (Step 1)

Proposition
Let X be a (smoothable) K-semistable (weak) Fano threefold, and
L be a Q-Cartier Weil divisor.
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General strategy (Step 1)

Proposition

Let X be a (smoothable) K-semistable (weak) Fano threefold, and
L be a Q-Cartier Weil divisor. Assume (X, L) can deform
Q-Cartierly to a smoothing. Then L is Cartier if

vol(X) > 20.

In particular, X is Gorenstein canonical if the inequality holds.
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Understand geometry of X.
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General strategy (Step 2)

Understand geometry of X.

Example
linear series |L|, anticanonical divisors, elephants, K3 surfaces, etc.

Goal

» Show that varieties on the boundary share similar properties
with generic one.

» Put all X € M in a suitable parameter space .
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General strategy (Step 3)
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General strategy (Step 3)

Compute Acm on & — W, and then identify

—K —GIT
M"Y ~ M = W [ry, G-
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General strategy (Step 3)

Compute Acm on & — W, and then identify

—K —GIT
M"Y ~ M = W [ry, G-

.. —K .
e This is usually where the properness of M~ comes in.
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Fano threefolds Ne2.15

For any X € M, -, choose a smoothing 2" — T with 2 ~ X

» Fort £ 0, Z; is a smooth Fano Ne2.15 with the Sarkisov link
structure

» ¢ is the blow-up of P3 along a (2, 3)-c.i. curve C;

» 1), is the blow-up at a node of a singular cubic hypersurface in
P4, which contracts the unique quadric containing C;

» Parameter space: PE — PY;
» Compute CM line bundle on PE: N, = £ 4 tn.
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Fano threefolds Ne2.15

Theorem (Liu-Z.24)

Let tg = 22

£ Then one has

My 15 ~ MO (tg) = PE [y, PGL(4).
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Fano threefolds Ne2.15

Theorem (Liu-Z.24)

Let tg = 22

e Then one has

My 15 ~ MO (tg) = PE [y, PGL(4).

Corollary (Liu—Z.24, Casalaina-Martin—Jensen—Laza'14)

There is a natural isomorphism
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Fano threefolds Ne2.15

Theorem (Liu-Z.24)
Let ty = g—% Then one has
GIT

Corollary (Liu—Z.24, Casalaina-Martin—Jensen—Laza'14)

There is a natural isomorphism
7K —_
MN9215 ~ M4(a0)7

where the latter is the birational model of M 4 in Hassett-Keel

program for any ag € (%, ﬁ).
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Proof of the theorem

» (Step 0) Done in the book The Calabi problem for Fano
threefolds.

» (Step 1 & 2) Later.
» (Step 3) Compute Acp: intersection theory.

Remark

The K-stability of smooth Fano Ne2.15 is proved by
Duarte-Guerreiro—Giovenzana—Viswanathan using Abban—Zhuang's
method.
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Proof of the theorem

Proposition (Liu-Z'24)
Any X € M{r(ezm admits a Sarkisov link structure

X

¢|V mu

where
» H (resp. L) is the degeneration of H, (resp. L;).
» ¢ is the blow-up of P along a (possibly singular)
(2, 3)-complete intersection curve.

» ¢ is the blow-up at a double point of Gorenstein cubic
hypersurface in P4.
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Step 1 for Mﬁzw

» As vol(—Kx) = 22 > 20, volume comparison applies.
» However 2" might not be Q-factorial (£ not Q-Cartier).

> Solution: 2 — 2 small Q-Cartierization s.t. Dis ample
over Z . The followings hold.

(1) K+ €2 = 2L —(1—¢)2is ample for 0 < € < 1;
(2) L is Q-Cartier, hence Cartier;

(3) X := 2, is Gorenstein canonical weak Fano;

(4) L:= Z\)} Q= §|)~( H:= ’7Q|g and E := éﬂg are all
Cartier.
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Step 2 for Mﬁizw

Show that |E| is base-point-free and defines a morphism
X Hycp

> Key point: show L is nef (it is automatically big).
> ldea: take S € | — K| a general elephant (K3 surface); first
show L|g is nef, then lift sections.
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Step 2 for Mﬁzw (nefness of L|g)

» Deform S =Sy to Sy € | — Kg,|.

» S; — S/ C P* contract Q; to py, a singular K3 surface of
degree 6, where p; is an ODP.

> (St,2Lt — (1 — €)Qt) ~ (S0,2Lo — (1 — €)Qo) as
degeneration of polarized K3 surfaces.

» (Moduli of lattice-polarized K3 surfaces) If S} ~ S{ as
degeneration of degree 6 K3, then Sy ~ Bl,S{, and hence L|g
is nef (as the pullback of Ly from Sp).
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Step 2 for Mﬁzw (nefness of L)

» Not hard to show that |kL|s = |kL|g| for k=1,2; and that
2L|g is base-point-free.

> Thus Bs|2L| = points U g-exceptional subsets, where
g : X — X is the birational modification.

> Since L = %(_Kf{ + Q) is g-ample, it is nef.
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Moduli of vector bundles and bundle stable pairs

Let C be a smooth projective curve of genus g > 2, and
A € Pic*971(C) a line bundle.
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Moduli of vector bundles and bundle stable pairs

Let C' be a smooth projective curve of genus g > 2, and
A € Pic*971(C) a line bundle.

» Mc(2,A): moduli space of rank 2 stable vector bundles on C
with fixed determinant A.

» Mc(2,A) is a Fano manifold of dimension 3g — 3, Fano index
2, and Picard rank 1.

» (Thaddeus'94) Let 0 € Q=g and N (o, A) be the moduli
space of o-semistable pairs (E, ¢), where E is a rank 2 vector
bundle with determinant A and ¢ € H°(C, E).

> N¢(o,A) is non-empty if and only if 0 < d — 1
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Moduli of vector bundles and bundle stable pairs

» For eachi=0,...,g — 1, N¢(o,A) is independent of
c€(g—3—i—1,g—3%—1i), denoted by N¢;(A).
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c€(g—3—i—1,g—3%—1i), denoted by N¢;(A).
» (Boundary model |) There is a natural isomorphism

Neo(A) ~ PHY(Ko @ A)* =~ P77

under which C' is embedded into N o(A) via |Kc ® Al.

» (Boundary model II) There is a natural surjective Abel-Jacobi
map o o
Neg-1(A) — Mc(2,0),

whose fiber over [E] is PH(C, E).
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Moduli of vector bundles and bundle stable pairs

» Foreachi=0,....9—1, Ng(o,A) is independent of
c€(g—3—i—1,g—3%—1i), denoted by N¢;(A).

» (Boundary model |) There is a natural isomorphism
Neoo(A) ~ PHY (Ko ®A)* ~ P393

under which C' is embedded into N o(A) via |Kc ® Al.
» (Boundary model II) There is a natural surjective Abel-Jacobi
map B -
Nc7g_1(A) - MC(27 A)a
whose fiber over [E] is PH(C, E).

» (Intermediate models) There is a divisorial contraction
¢ : Nci1(A) = Neo(A) which blows up N¢o(A) along C.
All the other intermediate moduli are connected by flips.
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Wall crossing

Nc 1(1\'3 ° cat(l\'\

VANZAWAN

Nea(A)  Nean) Ne gdd
e A3
Neo) =T M2 A)

Figure: Wall crossing of Thaddeus' moduli of stable pairs
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|[Kc®A|: C — PHY(C,Kc®A)* ~ P3

M = Mc(2,A) is a smooth quartic del Pezzo threefold (i.e.
(2,2)-complete intersection in P°)
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Example (g=2)

» C': smooth genus two curve, A € Pic3(C)

» |[Kc®A|:C—PHYC,Kc®A)* ~ P3

M = Mc(2,A) is a smooth quartic del Pezzo threefold (i.e.
(2,2)-complete intersection in P°)

v

» The Brill-Noether locus B of M which parametrizes vector
bundles E with h%(E) > 2 is a line;

» There is only one non-trivial moduli of bundle stable pairs

Nci(A) ~ BlcPHY(C,A*) ~ BlgM.

v

The wall-crossing structure coincides with Sarkisov link of
Fano family Ne2.19.
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structure
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—————— =¥ C P
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» ¢ is the blow-up of P? along a quintic curve C of genus 2.

» 1 is the blow-up of a (2, 2)-complete intersection in P5 along
a line, which contracts the unique quadric containing C.

» Parameter space: a W := Gr(2, 18)-bundle over Gr(2,6);
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Fano threefolds N¢2.19

A smooth Fano X threefold in family Ne2.19 has the Sarkisov link
structure

o= |7 \u

—————— =¥ C P

» ¢ is the blow-up of P? along a quintic curve C of genus 2.

» 1 is the blow-up of a (2, 2)-complete intersection in P5 along
a line, which contracts the unique quadric containing C.

» Parameter space: a W := Gr(2, 18)-bundle over Gr(2,6);
» Compute CM line bundle on W: Ny =&+ tn
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Fano threefolds N¢2.19

Theorem (Z.24)

Let V be a (2,2)-complete intersection in P°, ¢ C V be a line, and
X := BIl;V be the blow-up. Then there is a natural isomorphism

Mipp 1o =~ M (e) := W [/, PGL(6).

1. Every smooth Ne2.19 is K-stable.
2. If X is K-semistable, then V is K-semistable and ¢ C V™,

3. There is a commutative diagram

K K
Mz 19 M1 14 -
— K —K
Myes 19 Mot 14
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Explicit K-moduli open problems

Let C' be a smooth curve of genus g > 3, A € Pic?"1(C) be a
class, and M (2, A) the moduli space of stable vector bundles of
rank 2 and determinant A on C. Then M(2,A) is a Fano
manifold of dimension 3g — 3 and Fano index 2.

Question (Donaldson)

Is every M (2, A) K-stable? Describe the component of the
relevant K-moduli space? Compare it with M ?
Let N¢(2,A) be the Thaddeus' moduli of stable pairs.

> Is every No(2,A) K-(semi)stable?
» Describe the component of the relevant K-moduli space?

» [s there a natural forgetful morphism from the K-moduli of
Nc(2,A) to that of M(2,A)?
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