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K-moduli theorem

Theorem (K-moduli theorem; Alper, Blum, Halpern-Leistner,
Jiang, Li, Liu, Wang, Xu, Zhuang, etc.)
Fix a positive integer n and a rational number V > 0. Consider
the moduli pseudo-functor sending a base scheme S toX /S

∣∣∣∣∣∣
X /S is a family of Q-Fano varieties,
each fiber Xs is K-semistable, and
dim Xt = n and (−KXt)

n = V.

 .

Then there is an Artin stack, denoted by MK
n,V , of finite type over

C which represents the pseudo-functor.
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K-moduli theorem

Theorem (K-moduli theorem cont.)
▶ The C-points of MK

n,V parameterize n-dimensional
K-semistable Q-Fano varieties X of volume V .

▶ The Artin stack MK
n,V admits a separated good moduli space

M
K
n,V , which is a projective scheme.

▶ The C-points of MK
n,V parameterize n-dimensional

K-polystable Q-Fano varieties X of volume V .
▶ The Chow-Mumford (abbv. CM) Q-line bundle λCM on MK

n,V

descends to an ample Q-line bundle ΛCM on MK
n,V .

3/25



K-moduli theorem

Theorem (K-moduli theorem cont.)
▶ The C-points of MK

n,V parameterize n-dimensional
K-semistable Q-Fano varieties X of volume V .

▶ The Artin stack MK
n,V admits a separated good moduli space

M
K
n,V , which is a projective scheme.

▶ The C-points of MK
n,V parameterize n-dimensional

K-polystable Q-Fano varieties X of volume V .
▶ The Chow-Mumford (abbv. CM) Q-line bundle λCM on MK

n,V

descends to an ample Q-line bundle ΛCM on MK
n,V .

3/25



K-moduli theorem

Theorem (K-moduli theorem cont.)
▶ The C-points of MK

n,V parameterize n-dimensional
K-semistable Q-Fano varieties X of volume V .

▶ The Artin stack MK
n,V admits a separated good moduli space

M
K
n,V , which is a projective scheme.

▶ The C-points of MK
n,V parameterize n-dimensional

K-polystable Q-Fano varieties X of volume V .

▶ The Chow-Mumford (abbv. CM) Q-line bundle λCM on MK
n,V

descends to an ample Q-line bundle ΛCM on MK
n,V .

3/25



K-moduli theorem

Theorem (K-moduli theorem cont.)
▶ The C-points of MK

n,V parameterize n-dimensional
K-semistable Q-Fano varieties X of volume V .

▶ The Artin stack MK
n,V admits a separated good moduli space

M
K
n,V , which is a projective scheme.

▶ The C-points of MK
n,V parameterize n-dimensional

K-polystable Q-Fano varieties X of volume V .
▶ The Chow-Mumford (abbv. CM) Q-line bundle λCM on MK

n,V

descends to an ample Q-line bundle ΛCM on MK
n,V .

3/25



Question
How can we describe components of MK

n,V explicitly?

Goal
Moduli continuity method, with two highlighted examples of Fano
threefolds.
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General strategy (Step 0)

Prove MK is non-empty.

In other words, show that one member in the family is
K-semistable, and hence a general member is K-semistable by the
openness of K-(semi)stability.

This is usually done by equivariant method and δ-invariant
estimates.
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General strategy (Step 1)

A priori estimate on singularities of X ∈ MK .

Theorem (Liu’16)
Let X be an n-dimensional K-semistable Fano variety, and x ∈ X
a closed point. Then

vol(X)

vol(Pn) ≤ v̂ol(x,X)

v̂ol(0,Pn)
.
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General strategy (Step 1)

Proposition
Let X be a (smoothable) K-semistable (weak) Fano threefold, and
L be a Q-Cartier Weil divisor.

Assume (X,L) can deform
Q-Cartierly to a smoothing. Then L is Cartier if

vol(X) ≥ 20.

In particular, X is Gorenstein canonical if the inequality holds.
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General strategy (Step 2)

Understand geometry of X.
Example
linear series |L|, anticanonical divisors, elephants, K3 surfaces, etc.

Goal
▶ Show that varieties on the boundary share similar properties

with generic one.
▶ Put all X ∈ MK in a suitable parameter space W .
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General strategy (Step 3)

Compute λCM on X →W , and then identify

M
K ≃ M

GIT
= W �λCM G.

• This is usually where the properness of MK comes in.
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Fano threefolds №2.15

For any X ∈ MK
№2.15, choose a smoothing X → T with X0 ≃ X.

▶ For t ̸= 0, Xt is a smooth Fano №2.15 with the Sarkisov link
structure

Xt

ϕt=|Ht|

~~}}
}}
}}
}} ψt=|Lt|

$$H
HHH

HHH
HH

P3 //_______ Vt ⊆ P4.

▶ φt is the blow-up of P3 along a (2, 3)-c.i. curve C;
▶ ψt is the blow-up at a node of a singular cubic hypersurface in

P4, which contracts the unique quadric containing C;
▶ Parameter space: PE → P9;
▶ Compute CM line bundle on PE : Nt = ξ + tη.
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Fano threefolds №2.15

Theorem (Liu–Z.’24)
Let t0 = 22

51 . Then one has

M
K
№2.15 ≃ M

GIT
(t0) = PE �t0 PGL(4).

Corollary (Liu–Z.’24, Casalaina-Martin–Jensen–Laza’14)
There is a natural isomorphism

M
K
№2.15 ≃ M4(α0),

where the latter is the birational model of M4 in Hassett-Keel
program for any α0 ∈ (12 ,

23
44).
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Proof of the theorem

▶ (Step 0) Done in the book The Calabi problem for Fano
threefolds.

▶ (Step 1 & 2) Later.
▶ (Step 3) Compute λCM: intersection theory.

Remark
The K-stability of smooth Fano №2.15 is proved by
Duarte-Guerreiro–Giovenzana–Viswanathan using Abban–Zhuang’s
method.
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Proof of the theorem

Proposition (Liu–Z’24)
Any X ∈ MK

№2.15 admits a Sarkisov link structure

X
ϕ=|H|

~~~~
~~
~~
~~ ψ=|L|

##H
HH

HH
HH

HH

P3 //_______ V ⊆ P4,

where
▶ H (resp. L) is the degeneration of Ht (resp. Lt).
▶ φ is the blow-up of P3 along a (possibly singular)

(2, 3)-complete intersection curve.
▶ ψ is the blow-up at a double point of Gorenstein cubic

hypersurface in P4.
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Step 1 for MK
№2.15

▶ As vol(−KX) = 22 ≥ 20, volume comparison applies.
▶ However X might not be Q-factorial (L not Q-Cartier).
▶ Solution: X̃ → X small Q-Cartierization s.t. Q̃ is ample

over X . The followings hold.
(1) −K

X̃ /T
+ εQ̃ = 2L̃ − (1− ε)Q̃ is ample for 0 < ε≪ 1;

(2) L̃ is Q-Cartier, hence Cartier;

(3) X̃ := X̃0 is Gorenstein canonical weak Fano;

(4) L̃ := L̃|X̃ , Q̃ := Q̃|X̃ , H̃ := H̃|X̃ , and Ẽ := Ẽ |X̃ are all
Cartier.
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over X . The followings hold.
(1) −K

X̃ /T
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Step 2 for MK
№2.15

Show that |L̃| is base-point-free and defines a morphism

X̃
|L̃|−→ V ⊆ P4.

▶ Key point: show L̃ is nef (it is automatically big).
▶ Idea: take S ∈ | −K

X̃
| a general elephant (K3 surface); first

show L̃|S is nef, then lift sections.
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Step 2 for MK
№2.15 (nefness of L̃|S)

▶ Deform S = S0 to St ∈ | −KXt |.
▶ St → S′

t ⊆ P4 contract Qt to pt, a singular K3 surface of
degree 6, where pt is an ODP.

▶ (St, 2Lt − (1− ε)Qt)⇝ (S0, 2L0 − (1− ε)Q0) as
degeneration of polarized K3 surfaces.

▶ (Moduli of lattice-polarized K3 surfaces) If S′
t ⇝ S′

0 as
degeneration of degree 6 K3, then S0 ≃ Blp0S′

0 and hence L̃|S
is nef (as the pullback of L0 from S0).
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Step 2 for MK
№2.15 (nefness of L̃)

▶ Not hard to show that |kL̃|S = |kL̃|S | for k=1,2; and that
2L̃|S is base-point-free.

▶ Thus Bs|2L̃| = points ∪ g-exceptional subsets, where
g : X̃ → X is the birational modification.

▶ Since L̃ = 1
2(−KX̃

+Q) is g-ample, it is nef.
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Moduli of vector bundles and bundle stable pairs

Let C be a smooth projective curve of genus g ≥ 2, and
Λ ∈ Pic2g−1(C) a line bundle.

▶ MC(2,Λ): moduli space of rank 2 stable vector bundles on C
with fixed determinant Λ.

▶ MC(2,Λ) is a Fano manifold of dimension 3g − 3, Fano index
2, and Picard rank 1.

▶ (Thaddeus’94) Let σ ∈ Q>0 and NC(σ,Λ) be the moduli
space of σ-semistable pairs (E, φ), where E is a rank 2 vector
bundle with determinant Λ and φ ∈ H0(C,E).

▶ NC(σ,Λ) is non-empty if and only if σ ≤ d− 1
2
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Moduli of vector bundles and bundle stable pairs

▶ For each i = 0, ..., g − 1, NC(σ,Λ) is independent of
σ ∈

(
g − 1

2 − i− 1 , g − 1
2 − i

)
, denoted by NC,i(Λ).

▶ (Boundary model I) There is a natural isomorphism

NC,0(Λ) ≃ PH0(KC ⊗ Λ)∗ ≃ P3g−3,

under which C is embedded into NC,0(Λ) via |KC ⊗ Λ|.
▶ (Boundary model II) There is a natural surjective Abel-Jacobi

map
NC,g−1(Λ) −→ MC(2,Λ),

whose fiber over [E] is PH0(C,E).
▶ (Intermediate models) There is a divisorial contraction
φ : NC,1(Λ) → NC,0(Λ) which blows up NC,0(Λ) along C.
All the other intermediate moduli are connected by flips.
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Wall crossing

Figure: Wall crossing of Thaddeus’ moduli of stable pairs
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Example (g=2)

▶ C: smooth genus two curve, Λ ∈ Pic3(C)
▶ |KC ⊗ Λ| : C ↪→ PH0(C,KC ⊗ Λ)∗ ≃ P3

▶ M :=MC(2,Λ) is a smooth quartic del Pezzo threefold (i.e.
(2, 2)-complete intersection in P5)

▶ The Brill–Noether locus B of M which parametrizes vector
bundles E with h0(E) ≥ 2 is a line;

▶ There is only one non-trivial moduli of bundle stable pairs

NC,1(Λ) ≃ BlCPH1(C,Λ∗) ≃ BlBM.

▶ The wall-crossing structure coincides with Sarkisov link of
Fano family №2.19.
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Fano threefolds №2.19

A smooth Fano X threefold in family №2.19 has the Sarkisov link
structure

X
ϕ=|H|

~~}}
}}
}}
}} ψ=|L|

$$I
II

II
II

II

P3 //_______ V ⊆ P5.

▶ φ is the blow-up of P3 along a quintic curve C of genus 2.
▶ ψ is the blow-up of a (2, 2)-complete intersection in P5 along

a line, which contracts the unique quadric containing C.
▶ Parameter space: a W := Gr(2, 18)-bundle over Gr(2, 6);
▶ Compute CM line bundle on W : Nt = ξ + tη
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Fano threefolds №2.19

Theorem (Z.’24)
Let V be a (2, 2)-complete intersection in P5, ` ⊆ V be a line, and
X := BlℓV be the blow-up. Then there is a natural isomorphism

M
K
№2.19 ≃ M

GIT
(ε) := W �Nϵ PGL(6).

1. Every smooth №2.19 is K-stable.
2. If X is K-semistable, then V is K-semistable and ` ⊆ V sm.
3. There is a commutative diagram

MK
№2.19

//

��

MK
№1.14

��

M
K
№2.19 //M

K
№1.14

.
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Explicit K-moduli open problems

Let C be a smooth curve of genus g ≥ 3, Λ ∈ Pic2g−1(C) be a
class, and MC(2,Λ) the moduli space of stable vector bundles of
rank 2 and determinant Λ on C. Then MC(2,Λ) is a Fano
manifold of dimension 3g − 3 and Fano index 2.
Question (Donaldson)
Is every MC(2,Λ) K-stable? Describe the component of the
relevant K-moduli space? Compare it with Mg?
Let NC(2,Λ) be the Thaddeus’ moduli of stable pairs.
▶ Is every NC(2,Λ) K-(semi)stable?
▶ Describe the component of the relevant K-moduli space?
▶ Is there a natural forgetful morphism from the K-moduli of
NC(2,Λ) to that of MC(2,Λ)?
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