

The volume preserving Cremona group

Zhijia Zhang, New York University
joint with Konstantin Loginov

January 18, 2025, UCSD

$\text{char}(k) = 0$.

Introduction

Let k be a field of characteristic zero, and ω_n be the standard torus-invariant volume form on \mathbb{P}^n with logarithmic poles, given (in affine chart) by

$$\omega_n = \frac{dx_1}{x_1} \wedge \dots \wedge \frac{dx_n}{x_n}.$$

We are interested in the group of birational automorphisms of \mathbb{P}^n over k preserving ω_n :

$$\text{Bir}_k(\mathbb{P}^n, \omega_n) := \{\varphi \in \text{Cr}_n(k) : \varphi^*(\omega_n) = \omega_n\}.$$

This is a subgroup of the Cremona group $\text{Cr}_n(k)$, the group of birational automorphisms of \mathbb{P}^n over k .

The Cremona group

Theorem (Noether 1870, Castelnuovo 1901)

Over an algebraically closed field k , the Cremona group $\text{Cr}_2(k)$ is generated by $\text{PGL}_3(k)$ and the standard Cremona involution

$$(x : y : z) \mapsto \left(\frac{1}{x} : \frac{1}{y} : \frac{1}{z} \right).$$

Note that this is **not** true if k is not algebraically closed, e.g., $k = \mathbb{R}$.

Theorem (Usnich 2006, Blanc 2013)

Over an algebraically closed field k , the group $\text{Bir}_k(\mathbb{P}^2, \omega_2)$ is generated by \mathbb{G}_m^2 , $\text{SL}_2(\mathbb{Z})$ and the cluster transformation of order 5

$$(x, y) \mapsto \left(y, \frac{y+1}{x} \right).$$

Challenge: finding (explicit) generators for $\text{Cr}_n(k)$ for $n \geq 3$ is still open.

Theorem (Lin-Shinder 2024)

In each of the following cases, $\text{Cr}_n(k)$ is **not** generated by **pseudo-regularizable** elements (which include any birational map of finite order and automorphisms):

1. $n \geq 3$ and k is a number field; or the function field of an algebraic variety over a number field, over a finite field, or over an algebraically closed field,
2. $n \geq 4$ and k is a subfield of \mathbb{C} ,
3. $n \geq 5$ and k is any infinite field.

Motivic invariant of birational maps

Definition. A birational map $\varphi : X \dashrightarrow X$ is called **pseudo-regularizable** if $\varphi = \alpha^{-1} \circ \beta \circ \alpha$ where

- $\alpha : X \dashrightarrow Y$ is a birational map and Y is a projective variety,
- $\beta : Y \dashrightarrow Y$ is an isomorphism in codimension 1.

Motivic invariant. Given a birational map $\varphi : X \dashrightarrow Y$, let

$$c(\varphi) = \sum_i [E_i] - \sum_j [F_j] \in \text{Burn}_{n-1}(k)$$

where the sum of E_i (resp. F_i) runs over k -irreducible components of the exceptional divisor of φ (resp. φ^{-1}), and

$$\text{Burn}_{n-1}(k) = \mathbb{Z} \cdot \begin{bmatrix} \text{birational isomorphism} \\ \text{classes of varieties of} \\ \text{dimension } n-1 \text{ over } k \end{bmatrix}.$$

Motivic invariant of birational maps

Theorem (Lin-Shinder 2024)

$$c(\varphi \circ \psi) = c(\varphi) + c(\psi).$$

Thus $c(\text{pseudo-regularizable map}) = 0$.

Under their assumptions on n and k , there exists $\varphi \in \text{Cr}_n(k)$ s.t. $c(\varphi) \neq 0$. Then $\text{Cr}_n(k)$ is not generated by pseudo-regularizable maps.

Theorem (Loginov-Z. 2024)

In each of the following cases, $\text{Bir}_k(\mathbb{P}^n, \omega_n)$ is not generated by pseudo-regularizable elements, and is **not simple**:

1. $n \geq 3$ and k is a number field; or the function field of an algebraic variety over a number field, over a finite field, or over an algebraically closed field,
2. $n \geq 4$ and $k = \mathbb{C}$.

Log Calabi-Yau pairs

Corollary (Loginov-Z. 2024)

Under the same assumption, the same holds for

$$\text{Bir}_k(\mathbb{P}^n, \Delta_n)$$

the group of crepant birational automorphisms of the toric log Calabi-Yau pairs (\mathbb{P}^n, Δ_n) , where $\Delta_n = \sum_{i=1}^{n+1} \{x_i = 0\}$ is the sum of coordinate hyperplanes.

$$\left\{ \begin{array}{l} \text{crepant birational maps} \\ \text{of log Calabi-Yau pairs} \end{array} \right\} \sim \left\{ \begin{array}{l} \text{birational maps preserving} \\ \text{volume forms (up to scalar)} \end{array} \right\}$$

Goal/Proof: construct $\varphi \in \text{Bir}_k(\mathbb{P}^n, \Delta_n)$ such that $c(\varphi) \neq 0$.

Dimension 4: K3 surface

Let $k = \mathbb{C}$. The following construction is due to Hassett-Lai:

Let R_L be a K3 surface of degree 12, with polarization $\Gamma^2 = 12$. Γ gives an embedding $R_L \hookrightarrow \mathbb{P}^7$. Pick three general points $x_1, x_2, x_3 \in R_L$ and project from it:

$$R_L \dashrightarrow S_L \subset \mathbb{P}^4.$$

S_L is a non-normal surface, with three transverse double points p_1, p_2, p_3 . The linear system $|\mathcal{O}_{\mathbb{P}^4}(4) - S_L|$ gives rise to a birational map in $\text{Cr}_4(\mathbb{C})$

$$\begin{array}{ccc} & X & \\ \pi_L = \text{Bl}_{S_L} & \swarrow & \searrow \pi_M = \text{Bl}_{S_M} \\ S_L \subset \mathbb{P}^4 & \dashrightarrow & \mathbb{P}^4 \supset S_M \end{array}$$

where S_M is obtained in the same way from projection from another K3 of degree 12. We have

Dimension 4: K3 surface

Theorem (Hassett-Lai 2018)

For a **general** S_L arising from this construction, one has

$\text{Pic}(S_L) = \mathbb{Z}$, S_L is **not** isomorphic to S_M , and S_L is **derived equivalent** to S_M .

Proof: Construction of an explicit example and computation of

$$H^4(X, \mathbb{Z})_{\text{alg}} = \langle L^2, \tilde{\Gamma}_L, Q_1, Q_2, Q_3, \tilde{F}_i \rangle = \langle M^2, \tilde{\Gamma}_M, K_1, K_2, K_3, \tilde{G}_i \rangle$$

where

- L : pullback of a general hyperplane section on \mathbb{P}^4 ,
- $\tilde{\Gamma}_L$: preimage (in X) of the image (in \mathbb{P}^4) of the polarization Γ_L ,
- Q_i : quadric surface in X above the singular point $p_i \in S_L$,
- \tilde{F}_i : preimage in X of the (-1)-curves in S_L (arised from the projection).
- And the “mirrored” objects coming from the K3 on the other

Dimension 4: K3 surface

Goal: find quintic on \mathbb{P}^4 such that φ extends to a crepant birational map:

$$\begin{array}{ccc} & X & \\ \pi_L \swarrow & & \searrow \pi_M \\ (S_L \subset \mathbb{P}^4, ?H_L + ?H_L + B_L) & \dashrightarrow & (S_M \subset \mathbb{P}^4, ?H_M + ?H_M + B_M) \end{array}$$

Construction:

1. Pick singular points $p_1 \in S_L$, $q_1 \in S_M$. Consider Q_1, K_1 the quadric surface in X above them.
Let $H_L = \mathbb{P}^3 \supset \pi_L(K_1)$ and $H_M = \mathbb{P}^3 \supset \pi_M(Q_1)$.
2. Let $B_L = \varphi^{-1}_*(H_M)$ and $B_M = \varphi_*(H_L)$. Then B_L, B_M are quartic threefolds (with singularities).

Dimension 4: K3 surface

Using intersection theory: $\pi_L(K_1) \simeq \pi_M(Q_1) \simeq \mathbb{P}^1 \times \mathbb{P}^1$. And

$$\begin{aligned} B_L \cap H_L &= \text{span}(p_1, p_2, p_3) \cup \text{span}(F_1, p_1) \cup \pi_L(K_1) \\ &= \mathbb{P}^2 \cup \mathbb{P}^2 \cup \mathbb{P}^1 \times \mathbb{P}^1. \end{aligned}$$

Using these observations, we construct the diagram

$$\begin{array}{ccc} (S_L \subset \mathbb{P}^4, \textcolor{orange}{H}_L + \textcolor{green}{B}_L) & \dashrightarrow^{\varphi} & (S_M \subset \mathbb{P}^4, \textcolor{green}{H}_M + \textcolor{orange}{B}_M) \\ \begin{array}{c} | \\ f | \\ \Downarrow \end{array} & & \begin{array}{c} | \\ g | \\ \Downarrow \end{array} \\ (\mathbb{P}^4, \Delta_4) & \dashrightarrow^{\varphi'} & (\mathbb{P}^4, \Delta_4) \end{array}$$

where f, g are crepant birational maps with $c(f) = c(g) = 0$, and $\varphi' \in \text{Bir}_{\mathbb{C}}(\mathbb{P}^4, \Delta_4)$ with $c(\varphi') \neq 0$.

Dimension 3: quintic genus one curve

Let C be a quintic genus one curve, $C = \text{Gr}(2, 5) \cap \mathbb{P}^4$.

C is also the base locus of $\mathcal{M} = |\mathcal{O}_{\mathbb{P}^4}(2) - C|$. Let Q be a general member in \mathcal{M} . Then \mathcal{M} gives rise to a birational map φ with resolution

$$\begin{array}{ccc} & Z & \\ \text{Bl}_C \searrow & & \searrow \text{Bl}_{C'} \\ C \subset Q & \dashrightarrow^{\varphi} & \mathbb{P}^3 \supset C' \end{array}$$

where $C' \simeq_k \text{Jac}^2(C)$, which is also a quintic genus one curve. We have

$$c(\varphi) = [C \times \mathbb{P}^1] - [C' \times \mathbb{P}^1].$$

Theorem (Lin-Shinder) Under the aforementioned assumption on k , there exists such C with no k -points, and not k -isomorphic to C' .

Dimension 3: quintic genus one curve

Goal: find anti-canonical divisors on Q and \mathbb{P}^3 such that φ extends to a crepant birational map:

$$(Q, ?Q_1 + ?Q_1 + H_1) - \xrightarrow{\varphi} (\mathbb{P}^3, ?H_2 + ?H_2 + S_1)$$

Construction:

1. Pick a general plane $H_2 = \mathbb{P}^2$ in \mathbb{P}^3 , put $Q_1 = \varphi_*^{-1}(H_2)$. Then Q_1 is a smooth dP_4 .
2. $H_2 \cap C' = 5$ points. Let R be the conic in H_2 passing through these 5 points. Then its strict transform $\varphi_*^{-1}(R)$ is a line ℓ in Q_1 .
3. Pick a general point q on ℓ . Let H_1 be the tangent hyperplane section of Q at q , and put $S_1 = \varphi_*(H_1)$. Then H_1 is a quadric cone, S_1 is an A_1 -cubic surface.

Dimension 3: quintic genus one curve

Goal: find anti-canonical divisors on Q and \mathbb{P}^3 such that φ extends to a crepant birational map:

$$(Q, Q_1 + H_1) \xrightarrow{\varphi} (\mathbb{P}^3, H_2 + S_1)$$

$$\begin{array}{ccc} (Q, Q_1 + H_1) & \xrightarrow{\varphi} & (\mathbb{P}^3, H_2 + S_1) \\ | & & | \\ f & & g \\ \Downarrow & & \Downarrow \\ (\mathbb{P}^3, \Delta_3) & \dashrightarrow \xrightarrow{\varphi'} & (\mathbb{P}^3, \Delta_3) \end{array}$$

- $Q_1 = dP_4$, $H_1 = \mathbb{P}(1,1,2)$. And $Q_1 \cap H_1 =$ a twisted cubic + a line intersecting at two points.
- $H_2 = \mathbb{P}^2$, $S_1 = A_1$ -cubic surface. And $H_2 \cap S_1 =$ a conic + a line intersecting at two points.
- Then we construct crepant birational maps f, g such that

Birational geometry of log Calabi-Yau pairs

Let (X, D_X) be a log Calabi-Yau pair. The **coregularity** of (X, D_X) is the number $(\dim X - 1 - \dim(\text{the dual complex of } (X, D_X)))$.

Birational geometry of log CY pair with “large” corregularity is *rigid*:

Theorem (Araujo-Corti-Massenrenti 2023)

$\text{Bir}_{\mathbb{C}}(\mathbb{P}^3, D) = \text{Aut}_{\mathbb{C}}(\mathbb{P}^3, D)$ for a general irreducible smooth quartic surface D . The appearance of singularities on D enriches the birational geometry of the pair.

The case (toric pairs) we studied has corregularity 0, and has opposite behaviour.

Thank you!
