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Introduction

Let k be a field of characteristic zero, and !n be the standard

torus-invariant volume form on Pn with logarithmic poles, given (in

a�ne chart) by

!n =
dx1
x1

^ . . . ^
dxn
xn

.

We are interested in the group of birational automorphisms of Pn

over k preserving !n:

Birk(Pn,!n) := {' 2 Crn(k) : '
⇤(!n) = !n}.

This is a subgroup of the Cremona group Crn(k), the group of

birational automorphisms of Pn over k .
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The Cremona group

Theorem (Noether 1870, Castelnuovo 1901)

Over an algebraically closed field k , the Cremona group Cr2(k) is

generated by PGL3(k) and the standard Cremona involution

(x : y : z) 7! (
1

x
:
1

y
:
1

z
).

Note that this is not true if k is not algebraically closed, e.g.,

k = R.
Theorem (Usnich 2006, Blanc 2013)

Over an algebraically closed field k , the group Birk(P2,!2) is

generated by G2
m, SL2(Z) and the cluster transformation of order

5

(x , y) 7! (y ,
y + 1

x
).
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The Cremona group

Challenge: finding (explicit) generators for Crn(k) for n � 3 is still

open.

Theorem (Lin-Shinder 2024)

In each of the following cases, Crn(k) is not generated by

pseudo-regularizable elements (which include any birational

map of finite order and automorphisms):

1. n � 3 and k is a number field; or the function field of an

algebraic variety over a number field, over a finite field, or

over an algebraically closed field,

2. n � 4 and k is a subfield of C,
3. n � 5 and k is any infinite field.
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Motivic invariant of birational maps

Definition. A birational map ' : X 99K X is called

pseudo-regularizable if ' = ↵�1
� � � ↵ where

• ↵ : X 99K Y is a birational map and Y is a projective variety,

• � : Y 99K Y is an isomorphism in codimension 1.

Motivic invariant. Given a birational map ' : X 99K Y , let

c(') =
X

i

[Ei ]�
X

j

[Fj ] 2 Burnn�1(k)

where the sum of Ei (resp. Fi ) runs over k-irreducible components

of the exceptional divisor of ' (resp. '�1), and

Burnn�1(k) = Z ·

2

664

birational isomorphism

classes of varieties of

dimension n � 1 over k

3

775 .

5



Motivic invariant of birational maps

Theorem (Lin-Shinder 2024)

c(' �  ) = c(') + c( ).

Thus c(psuedo-regularizable map) = 0.

Under their assumptions on n and k , there exists ' 2 Crn(k) s.t.

c(') 6= 0. Then Crn(k) is not generated by pseudo-regularizable

maps.

Theorem (Loginov-Z. 2024)

In each of the following cases, Birk(Pn,!n) is not generated by

pseudo-regularizable elements, and is not simple:

1. n � 3 and k is a number field; or the function field of an

algebraic variety over a number field, over a finite field, or

over an algebraically closed field,

2. n � 4 and k = C. 6



Log Calabi-Yau pairs

Corollary (Loginov-Z. 2024)

Under the same assumption, the same holds for

Birk(Pn,�n)

the group of crepant birational automorphisms of the toric log

Calabi-Yau pairs (Pn,�n), where �n =
Pn+1

i=1 {xi = 0} is the sum

of coordinate hyperplanes.

(
crepant birational maps

of log Calabi-Yau pairs

)
⇠

(
birational maps preserving

volume forms (up to scalar)

)

Goal/Proof: construct ' 2 Birk(Pn,�n) such that c(') 6= 0.
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Dimension 4: K3 surface

Let k = C. The following construction is due to Hassett-Lai:

Let RL be a K3 surface of degree 12, with polarization �2 = 12. �

gives an embedding RL ,! P7. Pick three general points

x1, x2, x3 2 RL and project from it:

RL
// SL ⇢ P4.

SL is a non-normal surface, with three transverse double points

p1, p2, p3. The linear system|OP4(4)� SL| gives rise to a birational

map in Cr4(C)

X

⇡L=BlSL

{{

⇡M=BlSM

$$

SL ⇢ P4 ' // P4
� SM

where SM is obtained in the same way from projection from

another K3 of degree 12. We have

c(') = [SL ⇥ P1]� [SM ⇥ P1].
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Dimension 4: K3 surface

Theorem (Hassett-Lai 2018)

For a general SL arising from this construction, one has

Pic(SL) = Z, SL is not isomorphic to SM , and SL is derived

equivalent to SM .

Proof: Construction of an explicit example and computation of

H
4(X ,Z)alg = hL

2,e�L,Q1,Q2,Q3, eFi i = hM
2,e�M ,K1,K2,K3, eGi i

where

• L: pullback of a general hyperplane section on P4,

• e�L: preimage (in X ) of the image (in P4) of the polarization

�L,

• Qi : quadric surface in X above the singular point pi 2 SL,

• eFi : preimage in X of the (-1)-curves in SL (arised from the

projection).

• And the “mirrored” objects coming from the K3 on the other

side.
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Dimension 4: K3 surface

Goal: find quintic on P4 such that ' extends to a crepant

birational map:

X

⇡L

vv

⇡M

))

(SL ⇢ P4, ?HL+?HL + BL)
' // (SM ⇢ P4, ?HM+?HM + BM)

Construction:

1. Pick singular points p1 2 SL, q1 2 SM . Consider Q1,K1 the

quadric surface in X above them.

Let HL = P3
� ⇡L(K1) and HM = P3

� ⇡M(Q1).

2. Let BL = '�1
⇤ (HM) and BM = '⇤(HL).Then BL,BM are

quartic threefolds (with singularities).
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Dimension 4: K3 surface

Using intersection theory: ⇡L(K1) ' ⇡M(Q1) ' P1
⇥ P1. And

BL \ HL = span(p1, p2, p3) [ span(F1, p1) [ ⇡L(K1)

= P2
[ P2

[ P1
⇥ P1.

Using these observations, we construct the diagram

(SL ⇢ P4,HL + BL)
' //

f
✏✏

(SM ⇢ P4,HM + BM)

g
✏✏

(P4,�4)
'0

// (P4,�4)

where f , g are crepant birational maps with c(f ) = c(g) = 0, and

'0
2 BirC(P4,�4) with c('0) 6= 0.
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Dimension 3: quintic genus one curve

Let C be a quintic genus one curve, C = Gr(2, 5) \ P4.

C is also the base locus of M = |OP4(2)� C |. Let Q be a general

member in M. Then M gives rise to a birational map ' with

resolution

Z

BlC

||

BlC 0

##

C ⇢ Q
' // P3

� C
0

where C
0
'k Jac2(C ), which is also a quintic genus one curve. We

have

c(') = [C ⇥ P1]� [C 0
⇥ P1].

Theorem (Lin-Shinder) Under the aforementioned assumption on

k , there exists such C with no k-points, and not k-isomorphic to

C
0.
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Dimension 3: quintic genus one curve

Goal: find anti-canonical divisors on Q and P3 such that '

extends to a crepant birational map:

(Q, ?Q1+?Q1 + H1)
' // (P3, ?H2+?H2 + S1)

Construction:

1. Pick a general plane H2 = P2 in P3, put Q1 = '�1
⇤ (H2). Then

Q1 is a smooth dP4.

2. H2 \ C
0 = 5 points. Let R be the conic in H2 passing through

these 5 points. Then its strict transform '�1
⇤ (R) is a line ` in

Q1.

3. Pick a general point q on `. Let H1 be the tangent

hyperplane section of Q at q, and put S1= '⇤(H1). Then H1

is a quadric cone, S1 is an A1-cubic surface.
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Dimension 3: quintic genus one curve

Goal: find anti-canonical divisors on Q and P3 such that '

extends to a crepant birational map:

(Q,Q1 + H1)
' // (P3,H2 + S1)

(Q,Q1 + H1)
' //

f
✏✏

(P3,H2 + S1)

g
✏✏

(P3,�3)
'0

// (P3,�3)

• Q1 =dP4, H1 = P(1, 1, 2). And Q1 \ H1=a twisted cubic+a

line intersecting at two points.

• H2 = P2, S1 = A1-cubic surface. And H2 \ S1=a conic+a line

intersecting at two points.

• Then we construct crepant birational maps f , g such that

c(f ) = c(g) = 0. Thus '0
2 Birk(P3,�3) and c('0) 6= 0.
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Birational geometry of log Calabi-Yau pairs

Let (X ,DX ) be a log Calabi-Yau pair. The coregularity of (X ,DX )

is the number (dimX � 1� dim(the dual complex of (X ,DX ))).

Birational geometry of log CY pair with “large” corregularity is

rigid:

Theorem (Araujo-Corti-Massenrenti 2023)

BirC(P3,D) = AutC(P3,D) for a general irreducible smooth

quartic surface D. The appearance of singularities on D enriches

the birational geometry of the pair.

The case (toric pairs) we studied has corregularity 0, and has

opposite behaviour.
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Thank you!
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