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Positive cones

X n a smooth projective variety over C. Real Néron-Severi group N1(X ,R) = N1(X )⊗ R

Two open convex cones A ⊂ B ⊂ N1(X ,R)

A =

{∑
i

ciAi

∣∣∣∣ ci ∈ R>0,Ai ample Cartier divisor

}

B =

{∑
i

ciBi

∣∣∣∣ ci ∈ R>0,Bi big Cartier divisor

}
D Cartier divisor is called big if

Vol(D) := lim sup
m→+∞

h0(X ,OX (mD))

mn/n!
> 0
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Volume function

Vol(D) := lim sup
m→+∞

h0(X ,OX (mD))

mn/n!
∈ [0,+∞)

D ample ⇒ big, Vol(D) = (Dn)
n!

Fujita: the limsup is actually a limit

If D is nef (i.e. (D · C ) ⩾ 0 for all curves C ⊂ X ) then Vol(D) = (Dn)
n! ⩾ 0

Lazarsfeld: If D ≡ D ′ then Vol(D) = Vol(D ′), so volume descends to N1(X )

Volume is homogeneous of degree n, so it can be naturally extended to Q-divisors.

Vol is a locally Lipschitz function on N1(X )⊗Q, and it extends to a continuous function

Vol : N1(X ,R) → R⩾0
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More positive cones

B = {D ∈ N1(X ,R) | Vol(D) > 0}
A =cone of nef R-divisors
E := B =cone of pseudoeffective R-divisors. Vol|∂E ≡ 0

Ex. X = BlpPn, n ⩾ 2, N1(X ,R) ∼= R2 spanned by h = π∗OPn(1), e = OX (E )

A = {xh − ye | 0 < y < x}
B = {xh − ye | x > 0, y < x}

Vol(xh − ye) =

{
xn − yn, if y ⩾ 0

xn, if y < 0
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Regularity of Vol

Question (Lazarsfeld)

What is the regularity of Vol in N1(X ,R)?

• BlpP2 shows that the best to hope for is locally Lipschitz in N1(X ,R), and locally C 1,1 in B

Theorem

Vol : N1(X ,R) → R⩾0 is locally

Lipschitz on N1(X ,R) (Lazarsfeld)
C 1 on B (Lazarsfeld-Mustaţă, Boucksom-Favre-Jonsson)

C 1,1 on B (Junyu Cao-T.)

Expect a wall-chamber decomposition of B and Vol is smooth in chambers

D ∈ E with Vol(D) = 0 exhibit more “patologies”. Want to measure this quantitatively
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Analytic viewpoint

Natural embedding c1 : N
1(X ,R) → H1,1(X ,R) induced by D 7→ c1(OX (D)) for D Cartier

Explicitly, fix any smooth hermitian metric h on the line bundle OX (D). Its curvature Rh is a
closed real (1, 1)-form given locally by

Rh = −i∂∂ log h

Any other metric is of the form he−φ, φ ∈ C∞(X ,R) and

Rhe−φ = Rh + i∂∂φ

Every smooth representative α of c1(OX (D)) is of the form α = Rh + i∂∂φ for some
φ ∈ C∞(X ,R)
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Examples

Ex. D ample then c1(OX (D)) contains a smooth positive definite representative α > 0 (i.e. a
Kähler metric)

Can take α = 1
kΦ

∗ωFS, where Φ : X
|kD|→ PN embedding, k ≫ 1

Taking linear combinations, for every R-divisor D ∈ A we have c1(D) contains a Kähler
metric, and conversely

Ex. D semiample then c1(OX (D)) contains a smooth semipositive definite representative
α ⩾ 0

Again can take α = 1
kΦ

∗ωFS, where Φ : X
|kD|→ PN morphism, k sufficiently divisible

If c1(D) contains a smooth semipositive representative then D ∈ A is nef. The converse is
false!
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Currents

Serre’s example: C elliptic curve, E nonsplit extension

0 → OC → E → OC → 0

X = P(E ), D = OP(E)(1) is nef but c1(D) contains no smooth semipositive representative
(Yau 74; Demailly-Peternell-Schneider 94)

Demailly: However, given any X and D ∈ E pseff, with a smooth representative α ∈ c1(D), we
can always find φ : X → R∪{−∞} quasi-psh such that T := α+ i∂∂φ ⩾ 0 in the weak sense.

Thus T ∈ c1(D) is a closed positive current. Conversely if c1(D) contains a closed positive
current, then D ∈ E is pseff.
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Lelong numbers

Ex. D Cartier and effective, s ∈ H0(X ,OX (D)) nontrivial, and h a smooth Hermitian metric
on OX (D), then

φ = log |s|2h
is quasi-psh and

Rh + i∂∂φ = [D] ⩾ 0

T = α+ i∂∂φ ⩾ 0 closed positive current, x ∈ X , α ∈ c1(D). Lelong number

ν(T , x) = sup{γ ⩾ 0 | φ(y) ⩽ γ log |x − y |+ O(1)} ∈ R⩾0

Ex. D =
∑

i aiDi effective, then

ν([D], x) =
∑
i

aimultx(Di )
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K-trivial manifolds

Question (Motivating question)

Given D ∈ E with Vol(D) = 0, what is the least singular closed positive current T ∈ c1(D)?

Ex. If KX ∼ OX and D ∈ A ∩ B then D is semiample (Kawamata, Hacon-McKernan), hence
c1(D) contains a smooth semipositive representative.

Ex. If KX ∼ OX and D ∈ A Cartier with Vol(D) = 0, then conjecturally D ≡ D ′ where D ′ is
semiample, hence c1(D) contains a smooth semipositive representative. Only known for n = 2

Theorem (Filip-T.)

There is X projective K3 with D ∈ A ⊂ N1(X ,R) with Vol(D) = 0 such that c1(D) does
NOT contain a smooth semipositive representative.
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(2,2,2) Examples

X ⊂ (P1)3 generic hypersurface of degree (2, 2, 2)

3 projections to (P1)2 exhibit X as a ramified degree 2 cover

σ1, σ2, σ3 ∈ Aut(X ) covering involutions. f := σ1 ◦σ2 ◦σ3 has chaotic behavior under iteration

McMullen
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Eigendivisor

D ∈ N1(X ,R) eigenvector for f ∗, f ∗D ≡ λD, λ = log(9 + 4
√
5) > 1. We have D ∈ A and

Vol(A) = 0

Cantat: c1(D) contains a unique closed positive current T ⩾ 0. It has zero Lelong numbers.

Theorem (Dynamical rigidity of Kummer; Cantat-Dupont, Filip-T.)

T is smooth if and only if X is Kummer and f induced by an affine map of the corresponding
torus.

A generic X is not Kummer since dimN1(X ,R) = 3

Our proof uses holomorphic dynamics and also Yau’s Ricci-flat Kähler metrics on X
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K-trivial manifolds

Conjecture (T.)

Suppose KX ∼ OX , D ∈ A ⊂ N1(X ,R), then c1(D) contains a closed positive current T ⩾ 0
with ν(T , x) = 0, for all x ∈ X.

True if D ∈ A ∩ B, so we may assume Vol(D) = 0.

False if KX ̸∼ OX , e.g. in Serre’s example D is nef but the only closed positive current in
c1(D) is [C̃ ], where C̃ ⊂ X is the divisor induced by the subbundle OC → E

Theorem (Filip-T.)

Conjcture is true if X projective K3 with no (−2)-curves.

In this case we can even find T = α+ i∂∂φ with φ ∈ C 0(X ). The current T is unique if
Rc1(D) ∩ H2(X ,Q) = {0}!
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Back to (2, 2, 2) examples
X ⊂ (P1)3 generic hypersurface of degree (2, 2, 2)

Three projections to P1, pulling back O(1) gives three semiample divisor D1,D2,D3 which
span N1(X ,R) ∼= R3

Using N1(X ,R) and its intersection form we obtain a model of H2 as one sheet of the
hyperboloid {Vol = 1}

The involutions pullbacks σ∗
1, σ

∗
2, σ

∗
3 generate the symmetries of this tiling
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Idea of proof

Theorem (Filip-T.)

Given D ∈ A with Vol(D) = 0, c1(D) contains a closed positive current T ⩾ 0 with
ν(T , x) = 0, for all x ∈ X.

Follow a hyperbolic geodesic that ends at c1(D). In the quotient hyperbolic surface with
cusps, it is either divergent (if c1(D) rational) or recurrent (if c1(D) irrational). Carefully glue
basic estimates.
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Higher dimensions

X ⊂ (P1)N+1 generic hypersurface of degree (2, · · · , 2), N ⩾ 3

σj ∈ Bir(X ), 1 ⩽ j ⩽ N + 1 birational involutions (not regular!)

These are pseudoautomorphisms, hence can pull back divisors preserving h0 and Vol

Cantat-Oguiso: X satisfies a strong version of the Kawamata-Morrison cone conjecture: A is
rational polyhedral cone, and

Bir(X ) · A = Me

Me movable effective cone, whose interior is B

16



Hyperbolic manifold
Cantat-Oguiso: There is a Bir(X )-invariant quadratic form Q on N1(X ,R), of signature
(1,N). The sheet ∆ of the hyperboloid

{v ∈ N1(X ,R) | Q(v , v) = 1}

which contains some ample divisor is a copy of HN

MN = (∆ ∩Me)/Bir(X )

infinite-volume hyperbolic real N-manifold, with fundamental domain A ∩∆ nef classes
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Volume function

Vol : N1(X ,R) → R is Bir(X )-invariant, so descends to a continuous function ν : M → R>0,
which goes to +∞ in the cusps

Given D ∈ E with Vol(D) = 0 and A ample, γ(t) = (D + tA)/
√
Q(D + tA,D + tA) geodesic

ray in M

Vol(D + tA) = (Q(D + tA,D + tA))
N
2 ν(γ(t)) ∼ t

N
2 ν(γ(t))

1) When γ is in a compact region in M then ν(γ(t)) ∼ 1, so Vol(D + tA) ∼ t
N
2

2) When γ enters a cusp then ν(γ(t)) ∼ t1−N/2, so Vol(D + tA) ∼ t

Conversely, using hyperbolic geometry, we can construct a geodesic ray γ(t) in M for which

ν(t) oscillates between t1−
N
2 and t. Its limiting point at infinity is D ∈ ∂E as above. Thus we

get:
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Pathology of Vol

Theorem (Filip-Lesieutre-T.)

X ⊂ (P1)N+1 generic hypersurface of degree (2, · · · , 2), N ⩾ 3. Then there is
D ∈ E ⊂ N1(X ,R) with Vol(D) = 0 such that

lim inf
t↓0

logVol(D + tA)

log t
= 1, lim sup

t↓0

logVol(D + tA)

log t
=

N

2

lim inf
m→+∞

log h0(X , ⌊mD⌋+ A)

logm
=

N

2
, lim sup

m→+∞

log h0(X , ⌊mD⌋+ A)

logm
= N − 1.

Answers negatively questions of Lesieutre, Nakayama, Lehmann, Eckl, Fujino.
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How to obtain sections

On our X , take our D ∈ ∂E , and A sufficiently ample

Given m ⩾ 1 there is a ϕ ∈ Bir(X ) with ϕ∗(⌊mD⌋+ A) nef and big.

Theorem

X generic (2, . . . , 2) hypersurface, L nef and big line bundle, then

Vol(L) ⩽ h0(X , L) ⩽ CNVol(L)

h0(X , ⌊mD⌋+ A) = h0(X , ϕ∗(⌊mD⌋+ A)) ≈ Vol(ϕ∗(⌊mD⌋+ A))

= Vol(⌊mD⌋+ A) ≈ Vol(mD + A) = mNVol

(
D +

1

m
A

)
and Vol

(
D + 1

mA
)
oscillates between m−1 and m−N/2
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