

Pseudoeffective \mathbb{R} -divisors with volume zero on K-trivial manifolds

Valentino Tosatti

Courant Institute of Mathematical Sciences
New York University

K-trivial varieties and their moduli
UCSD

January 17, 2025

joint work with Simion Filip and John Lesieutre

Positive cones

X^n a smooth projective variety over \mathbb{C} . Real Néron-Severi group $N^1(X, \mathbb{R}) = N^1(X) \otimes \mathbb{R}$

Two open convex cones $\mathcal{A} \subset \mathcal{B} \subset N^1(X, \mathbb{R})$

$$\mathcal{A} = \left\{ \sum_i c_i A_i \mid c_i \in \mathbb{R}_{>0}, A_i \text{ ample Cartier divisor} \right\}$$

$$\mathcal{B} = \left\{ \sum_i c_i B_i \mid c_i \in \mathbb{R}_{>0}, B_i \text{ big Cartier divisor} \right\}$$

D Cartier divisor is called big if

$$\text{Vol}(D) := \limsup_{m \rightarrow +\infty} \frac{h^0(X, \mathcal{O}_X(mD))}{m^n/n!} > 0$$

Volume function

$$\text{Vol}(D) := \limsup_{m \rightarrow +\infty} \frac{h^0(X, \mathcal{O}_X(mD))}{m^n/n!} \in [0, +\infty)$$

$$D \text{ ample} \Rightarrow \text{big}, \text{Vol}(D) = \frac{(D^n)}{n!}$$

Fujita: the limsup is actually a limit

If D is nef (i.e. $(D \cdot C) \geq 0$ for all curves $C \subset X$) then $\text{Vol}(D) = \frac{(D^n)}{n!} \geq 0$

Lazarsfeld: If $D \equiv D'$ then $\text{Vol}(D) = \text{Vol}(D')$, so volume descends to $N^1(X)$

Volume is homogeneous of degree n , so it can be naturally extended to \mathbb{Q} -divisors.

Vol is a locally Lipschitz function on $N^1(X) \otimes \mathbb{Q}$, and it extends to a continuous function

$$\text{Vol} : N^1(X, \mathbb{R}) \rightarrow \mathbb{R}_{\geq 0}$$

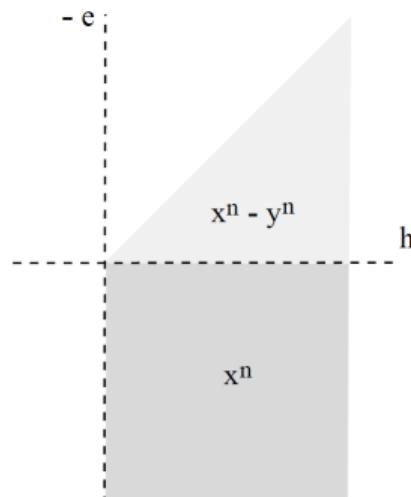
More positive cones

$$\mathcal{B} = \{D \in N^1(X, \mathbb{R}) \mid \text{Vol}(D) > 0\}$$

$\overline{\mathcal{A}}$ = cone of nef \mathbb{R} -divisors

$\mathcal{E} := \overline{\mathcal{B}}$ = cone of pseudoeffective \mathbb{R} -divisors. $\text{Vol}|_{\partial \mathcal{E}} \equiv 0$

Ex. $X = \text{Bl}_p \mathbb{P}^n$, $n \geq 2$, $N^1(X, \mathbb{R}) \cong \mathbb{R}^2$ spanned by $h = \pi^* \mathcal{O}_{\mathbb{P}^n}(1)$, $e = \mathcal{O}_X(E)$



$$\begin{aligned}\mathcal{A} &= \{xh - ye \mid 0 < y < x\} \\ \mathcal{B} &= \{xh - ye \mid x > 0, y < x\}\end{aligned}$$

$$\text{Vol}(xh - ye) = \begin{cases} x^n - y^n, & \text{if } y \geq 0 \\ x^n, & \text{if } y < 0 \end{cases}$$

Regularity of Vol

Question (Lazarsfeld)

What is the regularity of Vol in $N^1(X, \mathbb{R})$?

- $\text{Bl}_p \mathbb{P}^2$ shows that the best to hope for is locally Lipschitz in $N^1(X, \mathbb{R})$, and locally $C^{1,1}$ in \mathcal{B}

Theorem

$\text{Vol} : N^1(X, \mathbb{R}) \rightarrow \mathbb{R}_{\geq 0}$ is locally

- Lipschitz on $N^1(X, \mathbb{R})$ (Lazarsfeld)
- C^1 on \mathcal{B} (Lazarsfeld-Mustață, Boucksom-Favre-Jonsson)
- $C^{1,1}$ on \mathcal{B} (Junyu Cao-T.)

Expect a wall-chamber decomposition of \mathcal{B} and Vol is smooth in chambers

$D \in \mathcal{E}$ with $\text{Vol}(D) = 0$ exhibit more “pathologies”. Want to measure this quantitatively

Analytic viewpoint

Natural embedding $c_1 : N^1(X, \mathbb{R}) \rightarrow H^{1,1}(X, \mathbb{R})$ induced by $D \mapsto c_1(\mathcal{O}_X(D))$ for D Cartier

Explicitly, fix any smooth hermitian metric h on the line bundle $\mathcal{O}_X(D)$. Its curvature R_h is a closed real $(1, 1)$ -form given locally by

$$R_h = -i\partial\bar{\partial} \log h$$

Any other metric is of the form $he^{-\varphi}$, $\varphi \in C^\infty(X, \mathbb{R})$ and

$$R_{he^{-\varphi}} = R_h + i\partial\bar{\partial}\varphi$$

Every smooth representative α of $c_1(\mathcal{O}_X(D))$ is of the form $\alpha = R_h + i\partial\bar{\partial}\varphi$ for some $\varphi \in C^\infty(X, \mathbb{R})$

Examples

Ex. D ample then $c_1(\mathcal{O}_X(D))$ contains a smooth positive definite representative $\alpha > 0$ (i.e. a Kähler metric)

Can take $\alpha = \frac{1}{k}\Phi^*\omega_{\text{FS}}$, where $\Phi : X \xrightarrow{|kD|} \mathbb{P}^N$ embedding, $k \gg 1$

Taking linear combinations, for every \mathbb{R} -divisor $D \in \mathcal{A}$ we have $c_1(D)$ contains a Kähler metric, and conversely

Ex. D semiample then $c_1(\mathcal{O}_X(D))$ contains a smooth *semipositive* definite representative $\alpha \geq 0$

Again can take $\alpha = \frac{1}{k}\Phi^*\omega_{\text{FS}}$, where $\Phi : X \xrightarrow{|kD|} \mathbb{P}^N$ morphism, k sufficiently divisible

If $c_1(D)$ contains a smooth semipositive representative then $D \in \overline{\mathcal{A}}$ is nef. The converse is false!

Currents

Serre's example: C elliptic curve, E nonsplit extension

$$0 \rightarrow \mathcal{O}_C \rightarrow E \rightarrow \mathcal{O}_C \rightarrow 0$$

$X = \mathbb{P}(E)$, $D = \mathcal{O}_{\mathbb{P}(E)}(1)$ is nef but $c_1(D)$ contains no smooth semipositive representative (Yau 74; Demailly-Peternell-Schneider 94)

Demailly: However, given any X and $D \in \mathcal{E}$ pseff, with a smooth representative $\alpha \in c_1(D)$, we can always find $\varphi : X \rightarrow \mathbb{R} \cup \{-\infty\}$ quasi-psh such that $T := \alpha + i\partial\bar{\partial}\varphi \geq 0$ in the weak sense.

Thus $T \in c_1(D)$ is a closed positive current. Conversely if $c_1(D)$ contains a closed positive current, then $D \in \mathcal{E}$ is pseff.

Lelong numbers

Ex. D Cartier and effective, $s \in H^0(X, \mathcal{O}_X(D))$ nontrivial, and h a smooth Hermitian metric on $\mathcal{O}_X(D)$, then

$$\varphi = \log |s|_h^2$$

is quasi-psh and

$$R_h + i\partial\bar{\partial}\varphi = [D] \geq 0$$

$T = \alpha + i\partial\bar{\partial}\varphi \geq 0$ closed positive current, $x \in X$, $\alpha \in c_1(D)$. Lelong number

$$\nu(T, x) = \sup\{\gamma \geq 0 \mid \varphi(y) \leq \gamma \log |x - y| + O(1)\} \in \mathbb{R}_{\geq 0}$$

Ex. $D = \sum_i a_i D_i$ effective, then

$$\nu([D], x) = \sum_i a_i \text{mult}_x(D_i)$$

K-trivial manifolds

Question (Motivating question)

Given $D \in \mathcal{E}$ with $\text{Vol}(D) = 0$, what is the least singular closed positive current $T \in c_1(D)$?

Ex. If $K_X \sim \mathcal{O}_X$ and $D \in \overline{\mathcal{A}} \cap \mathcal{B}$ then D is semiample (Kawamata, Hacon-McKernan), hence $c_1(D)$ contains a smooth semipositive representative.

Ex. If $K_X \sim \mathcal{O}_X$ and $D \in \overline{\mathcal{A}}$ Cartier with $\text{Vol}(D) = 0$, then conjecturally $D \equiv D'$ where D' is semiample, hence $c_1(D)$ contains a smooth semipositive representative. Only known for $n = 2$

Theorem (Filip-T.)

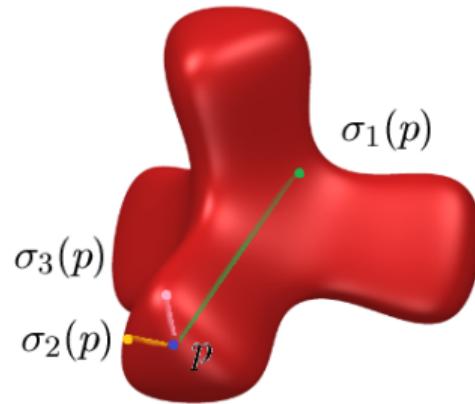
There is X projective K3 with $D \in \overline{\mathcal{A}} \subset N^1(X, \mathbb{R})$ with $\text{Vol}(D) = 0$ such that $c_1(D)$ does NOT contain a smooth semipositive representative.

(2,2,2) Examples

$X \subset (\mathbb{P}^1)^3$ generic hypersurface of degree (2, 2, 2)

3 projections to $(\mathbb{P}^1)^2$ exhibit X as a ramified degree 2 cover

$\sigma_1, \sigma_2, \sigma_3 \in \text{Aut}(X)$ covering involutions. $f := \sigma_1 \circ \sigma_2 \circ \sigma_3$ has chaotic behavior under iteration



McMullen

Eigendivisor

$D \in N^1(X, \mathbb{R})$ eigenvector for f^* , $f^*D \equiv \lambda D$, $\lambda = \log(9 + 4\sqrt{5}) > 1$. We have $D \in \overline{\mathcal{A}}$ and $\text{Vol}(A) = 0$

Cantat: $c_1(D)$ contains a unique closed positive current $T \geq 0$. It has zero Lelong numbers.

Theorem (Dynamical rigidity of Kummer; Cantat-Dupont, Filip-T.)

T is smooth if and only if X is Kummer and f induced by an affine map of the corresponding torus.

A generic X is not Kummer since $\dim N^1(X, \mathbb{R}) = 3$

Our proof uses holomorphic dynamics and also Yau's Ricci-flat Kähler metrics on X

K-trivial manifolds

Conjecture (T.)

Suppose $K_X \sim \mathcal{O}_X$, $D \in \overline{\mathcal{A}} \subset N^1(X, \mathbb{R})$, then $c_1(D)$ contains a closed positive current $T \geq 0$ with $\nu(T, x) = 0$, for all $x \in X$.

True if $D \in \overline{\mathcal{A}} \cap \mathcal{B}$, so we may assume $\text{Vol}(D) = 0$.

False if $K_X \not\sim \mathcal{O}_X$, e.g. in Serre's example D is nef but the only closed positive current in $c_1(D)$ is $[\tilde{C}]$, where $\tilde{C} \subset X$ is the divisor induced by the subbundle $\mathcal{O}_C \rightarrow E$

Theorem (Filip-T.)

Conjecture is true if X projective K3 with no (-2) -curves.

In this case we can even find $T = \alpha + i\partial\bar{\partial}\varphi$ with $\varphi \in C^0(X)$. The current T is unique if $\mathbb{R}c_1(D) \cap H^2(X, \mathbb{Q}) = \{0\}$!

Back to $(2, 2, 2)$ examples

$X \subset (\mathbb{P}^1)^3$ generic hypersurface of degree $(2, 2, 2)$

Three projections to \mathbb{P}^1 , pulling back $\mathcal{O}(1)$ gives three semiample divisor D_1, D_2, D_3 which span $N^1(X, \mathbb{R}) \cong \mathbb{R}^3$

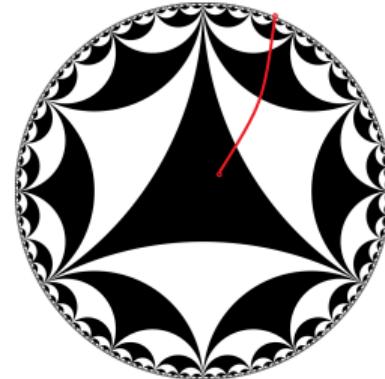
Using $N^1(X, \mathbb{R})$ and its intersection form we obtain a model of \mathbb{H}^2 as one sheet of the hyperboloid $\{\text{Vol} = 1\}$

The involutions pullbacks $\sigma_1^*, \sigma_2^*, \sigma_3^*$ generate the symmetries of this tiling

Idea of proof

Theorem (Filip-T.)

Given $D \in \overline{\mathcal{A}}$ with $\text{Vol}(D) = 0$, $c_1(D)$ contains a closed positive current $T \geq 0$ with $\nu(T, x) = 0$, for all $x \in X$.



Follow a hyperbolic geodesic that ends at $c_1(D)$. In the quotient hyperbolic surface with cusps, it is either divergent (if $c_1(D)$ rational) or recurrent (if $c_1(D)$ irrational). Carefully glue basic estimates.

Higher dimensions

$X \subset (\mathbb{P}^1)^{N+1}$ generic hypersurface of degree $(2, \dots, 2)$, $N \geq 3$

$\sigma_j \in \text{Bir}(X)$, $1 \leq j \leq N+1$ birational involutions (not regular!)

These are pseudoautomorphisms, hence can pull back divisors preserving h^0 and Vol

Cantat-Oguiso: X satisfies a strong version of the Kawamata-Morrison cone conjecture: $\overline{\mathcal{A}}$ is rational polyhedral cone, and

$$\text{Bir}(X) \cdot \overline{\mathcal{A}} = \mathcal{M}^e$$

\mathcal{M}^e movable effective cone, whose interior is \mathcal{B}

Hyperbolic manifold

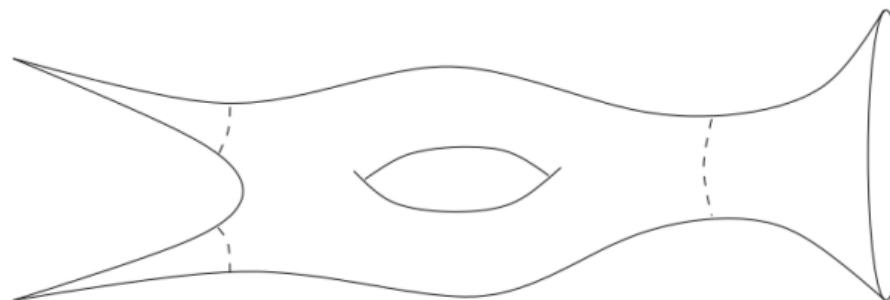
Cantat-Oguiso: There is a $\text{Bir}(X)$ -invariant quadratic form Q on $N^1(X, \mathbb{R})$, of signature $(1, N)$. The sheet Δ of the hyperboloid

$$\{v \in N^1(X, \mathbb{R}) \mid Q(v, v) = 1\}$$

which contains some ample divisor is a copy of \mathbb{H}^N

$$M^N = (\Delta \cap \mathcal{M}^e)/\text{Bir}(X)$$

infinite-volume hyperbolic real N -manifold, with fundamental domain $\overline{\mathcal{A}} \cap \Delta$ nef classes



Volume function

$\text{Vol} : N^1(X, \mathbb{R}) \rightarrow \mathbb{R}$ is $\text{Bir}(X)$ -invariant, so descends to a continuous function $\nu : M \rightarrow \mathbb{R}_{>0}$, which goes to $+\infty$ in the cusps

Given $D \in \mathcal{E}$ with $\text{Vol}(D) = 0$ and A ample, $\gamma(t) = (D + tA)/\sqrt{Q(D + tA, D + tA)}$ geodesic ray in M

$$\text{Vol}(D + tA) = (Q(D + tA, D + tA))^{\frac{N}{2}} \nu(\gamma(t)) \sim t^{\frac{N}{2}} \nu(\gamma(t))$$

- 1) When γ is in a compact region in M then $\nu(\gamma(t)) \sim 1$, so $\text{Vol}(D + tA) \sim t^{\frac{N}{2}}$
- 2) When γ enters a cusp then $\nu(\gamma(t)) \sim t^{1-N/2}$, so $\text{Vol}(D + tA) \sim t$

Conversely, using hyperbolic geometry, we can construct a geodesic ray $\gamma(t)$ in M for which $\nu(t)$ oscillates between $t^{1-\frac{N}{2}}$ and t . Its limiting point at infinity is $D \in \partial \mathcal{E}$ as above. Thus we get:

Pathology of Vol

Theorem (Filip-Lesieutre-T.)

$X \subset (\mathbb{P}^1)^{N+1}$ generic hypersurface of degree $(2, \dots, 2)$, $N \geq 3$. Then there is $D \in \mathcal{E} \subset N^1(X, \mathbb{R})$ with $\text{Vol}(D) = 0$ such that

$$\liminf_{t \downarrow 0} \frac{\log \text{Vol}(D + tA)}{\log t} = 1, \quad \limsup_{t \downarrow 0} \frac{\log \text{Vol}(D + tA)}{\log t} = \frac{N}{2}$$

$$\liminf_{m \rightarrow +\infty} \frac{\log h^0(X, \lfloor mD \rfloor + A)}{\log m} = \frac{N}{2}, \quad \limsup_{m \rightarrow +\infty} \frac{\log h^0(X, \lfloor mD \rfloor + A)}{\log m} = N - 1.$$

Answers negatively questions of Lesieutre, Nakayama, Lehmann, Eckl, Fujino.

How to obtain sections

On our X , take our $D \in \partial \mathcal{E}$, and A sufficiently ample

Given $m \geq 1$ there is a $\phi \in \text{Bir}(X)$ with $\phi^*(\lfloor mD \rfloor + A)$ nef and big.

Theorem

X generic $(2, \dots, 2)$ hypersurface, L nef and big line bundle, then

$$\text{Vol}(L) \leq h^0(X, L) \leq C_N \text{Vol}(L)$$

$$\begin{aligned} h^0(X, \lfloor mD \rfloor + A) &= h^0(X, \phi^*(\lfloor mD \rfloor + A)) \approx \text{Vol}(\phi^*(\lfloor mD \rfloor + A)) \\ &= \text{Vol}(\lfloor mD \rfloor + A) \approx \text{Vol}(mD + A) = m^N \text{Vol}\left(D + \frac{1}{m}A\right) \end{aligned}$$

and $\text{Vol}\left(D + \frac{1}{m}A\right)$ oscillates between m^{-1} and $m^{-N/2}$