

Rational Chow ring of the universal moduli space of semistable rank two bundles over genus two curves

Shubham Saha

K-trivial varieties and their moduli
UC San Diego

January 2025

The \mathbb{G}_m -rigidification

- There are two versions of the universal stack of slope (semi)stable bundles over curves in existing literature.
- The objects of both stacks $\mathfrak{U}(r, d, g), \mathcal{U}(r, d, g)$ consist of families of smooth curves of genus g with a bundle of rank r and degree d with morphisms in $\mathcal{U}(r, d, g)$ defined upto twisting by a line bundle.

The \mathbb{G}_m -rigidification

- There are two versions of the universal stack of slope (semi)stable bundles over curves in existing literature.
- The objects of both stacks $\mathfrak{U}(r, d, g), \mathcal{U}(r, d, g)$ consist of families of smooth curves of genus g with a bundle of rank r and degree d with morphisms in $\mathcal{U}(r, d, g)$ defined upto twisting by a line bundle.
- The natural map $\mathfrak{U}(r, d, g) \rightarrow \mathcal{U}(r, d, g)$ is a \mathbb{G}_m -rigidification.
- These stacks, in particular their geometry, has been studied in numerous papers including Schmitt (2005), Melo & Viviani (2010), Fringuelli (2018), Grimes (2020), Larson (2024) etc.

Intersection Theory

- Tautological classes for these stacks have been defined in Larson (2024), Fringuelli (2018) and Melo & Viviani (2010) based on the tautological classes in \mathcal{M}_g .

Intersection Theory

- Tautological classes for these stacks have been defined in Larson (2024), Fringuelli (2018) and Melo & Viviani (2010) based on the tautological classes in \mathcal{M}_g .
- The first calculation of Chow rings of these stacks was done in Larson (2024) for $\mathcal{J}_g^d := \mathcal{U}(1, d, g)|_{\mathcal{H}_g}$, $J_{2,g}^d := \mathcal{U}(r, d, g)|_{\mathcal{H}_g}$.

Intersection Theory

- Tautological classes for these stacks have been defined in Larson (2024), Fringuelli (2018) and Melo & Viviani (2010) based on the tautological classes in \mathcal{M}_g .
- The first calculation of Chow rings of these stacks was done in Larson (2024) for $\mathcal{J}_g^d := \mathcal{U}(1, d, g)|_{\mathcal{H}_g}$, $J_{2,g}^d := \mathcal{U}(r, d, g)|_{\mathcal{H}_g}$.
- We have a complete description of Picard groups of both these stacks coming from Melo & Viviani (2010) and Fringuelli (2018).

Intersection Theory

- Tautological classes for these stacks have been defined in Larson (2024), Fringuelli (2018) and Melo & Viviani (2010) based on the tautological classes in \mathcal{M}_g .
- The first calculation of Chow rings of these stacks was done in Larson (2024) for $\mathcal{J}_g^d := \mathcal{U}(1, d, g)|_{\mathcal{H}_g}$, $J_{2,g}^d := \mathcal{U}(r, d, g)|_{\mathcal{H}_g}$.
- We have a complete description of Picard groups of both these stacks coming from Melo & Viviani (2010) and Fringuelli (2018).

Assuming the ground field to be of characteristic 0 and algebraically closed, we calculate $A^*(\mathcal{U}(2, d, 2))$ for all degrees d .

First Steps & Assumptions

We work over an algebraically closed ground field of characteristic 0.

- We calculate $A^*(\mathcal{U}(2, d, 2))$ by calculating the Chow ring of its coarse moduli space $U(2, d, 2)$.
- We start with an étale S_6 -cover of M_2 , call it M_* .
- More concretely, $M_* \subset \mathbb{A}^3$ is the coarse moduli space for the stack $\mathcal{H}_{2,6}^w$ as considered by Edidin & Hu (2022).
- We construct a “universal” family of genus 2 curves $\mathcal{C}_* \xrightarrow{\pi} M_*$ with sections $\{\sigma_i\}_{1 \leq i \leq 6}$ parametrizing the Weierstrass points on fibers of π .

S_6 -actions

- The map $M_* \rightarrow M_2$ defined by π , is the S_6 -quotient map on $M_* \simeq M_{0,6}$.
- This S_6 -action lifts to \mathcal{C}_* via π , permuting the sections $\{\sigma_i\}_{1 \leq i \leq 6}$ correspondingly.
- We use the S_6 -equivariance and the hyperelliptic involution of π to calculate $A^*(U(2, d, 2))$ via $\tilde{U}(2, d, 2)$.
- We start with universal Jacobians for the family $\mathcal{C}_* \rightarrow M_*$ and then move to even and odd degree cases for rank 2.

"Universal" Jacobians

- $J_*(d)$ be the relative Jacobian defined using π .
- The S_6 -equivariance of π defines an S_6 -action on $J_*(d)$.
- The quotient $J_*(d)/S_6$ is generically a double cover of $J_{d,2}$ due to the involution on \mathcal{C}_* .

$$\begin{array}{ccccccc} J_*(d) & \xrightarrow{/S_6} & J_*(d)/S_6 & \xrightarrow{q_h} & J_{d,2} & & \\ & \searrow & \downarrow & & \nearrow & & \\ & \mathcal{C}_* & \xrightarrow{/S_6} & \mathcal{C}_*/S_6 & \xrightarrow{q_h} & M_{2,1} & \\ & \searrow & \downarrow & & \nearrow & \downarrow & \\ & M_* & & \xrightarrow{\quad} & M_2 & & \end{array}$$

$A^*(J_*(d))$

Analysis of the S_6 -action and the involution on $J_*(d)$ shows that $A^*(J_{d,2}) \simeq A^*(J_*(d))$. Giving us the first Theorem, which provides an alternate proof to Theorem 1.1 in Larson (2024) for $J_{d,2}$.

Theorem

The Chow ring of $J_(d)$ is given by*

$$A^*(J_*(d)) \simeq \mathbb{Q}[\Theta_d]/(\Theta_d^3)$$

for all $d \in \mathbb{Z}$. Consequently, the Chow rings of $J_{2,d}$ are given by

$$J_{2,1} \simeq \mathbb{Q}[\Theta]/(\Theta^3), J_{2,2} \simeq \mathbb{Q}[Z]/(Z^3)$$

Existing techniques

- We have that $|2\Theta_C| \xrightarrow{\sim} D_C$ $SU_C(2)$ for any curve C of genus 2 by Narasimhan & Ramanan (1969).
- The map D_C is used to construct $U_C(2,0)$ from $SU_C(2)$ by considering the map

$$SU_C(2) \times J^0(C) \rightarrow U_C(2,0)$$

making $U_C(2,0)$ the quotient of the product by 2-torsion points in $J^0(C)$.

Why M_* ?

- Extending arguments in [4] directly over M_2 is difficult since the diagonal action of Γ_2 on $|2\Theta_C| \times J^0(C)$ is now an étale equivalence relation.

Why M_* ?

- Extending arguments in [4] directly over M_2 is difficult since the diagonal action of Γ_2 on $|2\Theta_C| \times J^0(C)$ is now an étale equivalence relation.
- To work around this, we move the entire discussion over to M_* from M_2 and observe that Γ_* splits. Making this étale equivalence relation a finite group action.
- Using the section σ_1 , we define a Poincaré bundle on \mathcal{C}_J and use it to construct the universal extension space as described in [5].

These are all the ingredients needed to extend results from [4] to the universal setting.

Quotients and the Chow groups

$$|2\Theta_*|_{\pi \times M_*} J_*(d) \xrightarrow{q_{\Gamma}} \tilde{U}(2, 2d, 2) \xrightarrow{q_{S_6}} U_*(2, 2d, 2) \xrightarrow{q_h} U(2, 2d, 2)$$

The sequence of quotient maps gives the following theorem which coincides with Fringuelli (2018) in codimension 1.

Theorem

Let $\nu \in A^1(\tilde{U}(2, 2d, 2))$ be the divisor which pulls back to $\pi_{\Theta}^* \zeta$ and $\tilde{Z}_d := \det^* Z_{2d}$. We have

$$A^*(\tilde{U}(2, 2d, 2)) \simeq \mathbb{Q}[\nu, \tilde{Z}_d]/(\nu^4, \tilde{Z}_d^3)$$

for all $d \in \mathbb{Z}$ where $\tilde{Z}_d = \det_d^* Z_d$. Furthermore, $\nu + \frac{1}{2}\tilde{Z}_d$ can be identified with the generalized Θ -divisor if d is odd.

Geometry of $U_C(2, L)$

We use Bertram (1992) and apply it to case $d = 3, g = 2$. This provides a recipe to construct $U_C(2, L)$ from the extension space $\mathbb{P}_L := \mathbb{P}(H^1(C, L^\vee))$ via a single blowup-blowdown pair.

$$\begin{array}{ccccc} E_L & \hookrightarrow & bl_C(\mathbb{P}_L) & \xrightarrow{\Phi_L} & U_C(2, L) \\ \downarrow & & \downarrow \sigma_L & & \nearrow \phi_L \\ C & \hookrightarrow & Q_L & \xrightarrow{\quad} & \mathbb{P}_L \end{array}$$

Geometry of $U_C(2, L)$

We use Bertram (1992) and apply it to case $d = 3, g = 2$. This provides a recipe to construct $U_C(2, L)$ from the extension space $\mathbb{P}_L := \mathbb{P}(H^1(C, L^\vee))$ via a single blowup-blowdown pair.

$$\begin{array}{ccccc} E_L & \hookrightarrow & bl_C(\mathbb{P}_L) & \xrightarrow{\Phi_L} & U_C(2, L) \\ \downarrow & & \downarrow \sigma_L & & \nearrow \phi_L \\ C & \hookrightarrow & Q_L & \hookrightarrow & \mathbb{P}_L \end{array}$$

- E_L maps onto the unique quadric hypersurface containing $C \hookrightarrow Q_L$.
- Q_L is a quadric cone iff L has a basepoint.

Generalizing over M_*

- Due to the lack of a canonical section $M_2 \rightarrow J_{3,2}$, there is no direct way to go from fixed determinant to the entire Jacobian.
- We consider a universal version of the previous diagram by using the Poincaré bundle ξ on $\mathcal{C}_J := \mathcal{C}_* \times_{M_*} J_*(3)$.

$$\begin{array}{ccccc} \xi & & E_\xi & \hookrightarrow & \text{bl}_{\mathcal{C}_J}(\mathbb{P}_\xi) & \xrightarrow{\Phi_\xi} & \tilde{U}(2,3,2) \\ \downarrow & & \downarrow & & & & \downarrow \sigma_\pi \\ \mathcal{C}_J & \hookrightarrow & Q_\xi & \xrightarrow{\quad} & \mathbb{P}_\xi & & \end{array}$$

We still have that σ_π, Φ_ξ are a blowup-blowdown pair and move through this diagram to calculate $A^*(\tilde{U}(2,3,2))$.

Geometry of E_ξ, Φ_E

- Q_ξ is a family of smooth quadric surfaces degenerating into quadric cones over $J_*(3)$. Making E_ξ a family of \mathbb{F}_0 's degenerating to \mathbb{F}_2 .
- $B_* := \Phi_\xi(E_\xi)$ is a \mathbb{P}^1 -fibration over $J_*(3)$. The map Φ_E giving the Hirzebruch surface vibration.
- It can also be seen that B_* is the universal Brill-Noether locus of bundles in $\tilde{U}(2, 3, 2)$ with 2 sections.

Geometry of E_ξ, Φ_E

- Q_ξ is a family of smooth quadric surfaces degenerating into quadric cones over $J_*(3)$. Making E_ξ a family of \mathbb{F}_0 's degenerating to \mathbb{F}_2 .
- $B_* := \Phi_\xi(E_\xi)$ is a \mathbb{P}^1 -fibration over $J_*(3)$. The map Φ_E giving the Hirzebruch surface vibration.
- It can also be seen that B_* is the universal Brill-Noether locus of bundles in $\tilde{U}(2, 3, 2)$ with 2 sections.
- Excision on $J_*(3)$ helps with stratifying E_ξ . We use sections $\{\sigma_i\}_{1 \leq i \leq 6}$ to construct various loci in E_ξ .

Final Theorem

Calculating the Chow rings of $\mathcal{C}_J, \mathbb{P}_\xi, \tilde{\mathbb{P}}_\xi$ and analyzing the blowdown Φ_ξ gives the following theorem which coincides with Fringuelli (2018) in codimension 1.

Theorem

$$A^*(\tilde{U}(2,3,2)) = \mathbb{Q}[H_U, \Theta_U, B_*]/(\Theta_U^3, H_U^2\Theta_U^2 - 4B_*\Theta_U^2, B_*H_U^2 - B_*H_U\Theta_U + \frac{1}{2}B_*\Theta_U^2, B_*H_U^2 - B_*^2, H_U^3 + H_U^2\Theta_U + \frac{1}{2}H_U\Theta_U^2 - 4B_*H_U)$$

Therefore, the Chow ring of $U(2,3,2)$ is isomorphic to the above via $q_{S_6}^* \circ q_h^*$.

References

- [1] D. Edidin and Z. Hu, *The integral Chow rings of the stacks of hyperelliptic Weierstrass points*, arXiv:2208.00556 (To appear at Michigan Mathematical Journal) (2022).
- [2] R. Fringuelli, *The Picard group of the universal moduli space of vector bundles on stable curves*, Advances in Mathematics **336** (2018), 477–557.
- [3] H. Larson, *The Chow ring of the universal Picard stack over the hyperelliptic locus*, arXiv:2404.12607 (2024).
- [4] M.S. Narasimhan and S. Ramanan, *Moduli of Vector Bundles on a Compact Riemann Surface*, Annals of Mathematics **89** (1969), no. 1, 14–51.
- [5] S. Saha, *Unirationality of the universal moduli space of semistable bundles over smooth curves*, arXiv:2402.01041 (2024).