

Canonical bundle formula and equivalence between non-vanishing and Campana–Peternell conjectures

Hyunsuk Kim, 김현석

University of Michigan

K -trivial varieties, San Diego

Conjectures

Non-vanishing conjecture

X smooth projective.

$$K_X \text{ pseudo-effective} \implies K_X \text{ effective.}$$

Campana–Păun (CP) conjecture

X smooth projective, D effective \mathbb{Q} -divisor on X .

$$K_X - D \text{ pseudo-effective} \implies \kappa(X) \geq \kappa(X, D).$$

Conjectures

Non-vanishing conjecture

X smooth projective.

$$K_X \text{ pseudo-effective} \implies K_X \text{ effective.}$$

Campana–Peternell (CP) conjecture

X smooth projective, D effective \mathbf{Q} -divisor on X .

$$K_X - D \text{ pseudo-effective} \implies \kappa(X) \geq \kappa(X, D).$$

- If we take $D = 0$ in the Campana–Peternell conjecture, then it is precisely the non-vanishing conjecture.

Conjectures

Non-vanishing conjecture

X smooth projective.

$$K_X \text{ pseudo-effective} \implies K_X \text{ effective.}$$

Campana–Peternell (CP) conjecture

X smooth projective, D effective \mathbf{Q} -divisor on X .

$$K_X - D \text{ pseudo-effective} \implies \kappa(X) \geq \kappa(X, D).$$

- If we take $D = 0$ in the Campana–Peternell conjecture, then it is precisely the non-vanishing conjecture.
- These two are both special cases of the abundance conjecture.

Conjectures

Non-vanishing conjecture

X smooth projective.

$$K_X \text{ pseudo-effective} \implies K_X \text{ effective.}$$

Campana–Peternell (CP) conjecture

X smooth projective, D effective \mathbf{Q} -divisor on X .

$$K_X - D \text{ pseudo-effective} \implies \kappa(X) \geq \kappa(X, D).$$

- If we take $D = 0$ in the Campana–Peternell conjecture, then it is precisely the non-vanishing conjecture.
- These two are both special cases of the abundance conjecture.
- Question: Does non-vanishing imply the Campana–Peternell conjecture?

Conjectures

Non-vanishing conjecture

X smooth projective.

$$K_X \text{ pseudo-effective} \implies K_X \text{ effective.}$$

Campana–Peternell (CP) conjecture

X smooth projective, D effective \mathbf{Q} -divisor on X .

$$K_X - D \text{ pseudo-effective} \implies \kappa(X) \geq \kappa(X, D).$$

- If we take $D = 0$ in the Campana–Peternell conjecture, then it is precisely the non-vanishing conjecture.
- These two are both special cases of the abundance conjecture.
- Question: Does non-vanishing imply the Campana–Peternell conjecture?
- Today: See how the canonical bundle formula comes in and what it suggests!

Some reductions

- One can assume that D is spanned, by taking the Iitaka fibration of D . Hence, $D = f^*H$ where $f: X \rightarrow Y$ is an algebraic fiber space, and H ample on Y .

Some reductions

- One can assume that D is spanned, by taking the Iitaka fibration of D . Hence, $D = f^*H$ where $f: X \rightarrow Y$ is an algebraic fiber space, and H ample on Y .
- Insensitive upon taking birational models, hence assume X and Y smooth.

Some reductions

- One can assume that D is spanned, by taking the Iitaka fibration of D . Hence, $D = f^*H$ where $f: X \rightarrow Y$ is an algebraic fiber space, and H ample on Y .
- Insensitive upon taking birational models, hence assume X and Y smooth.

Question

$f: X \rightarrow Y$ algebraic fiber space. $m_0 K_X - f^*H$ pseudo-effective for some m_0 . Is $\kappa(X) \geq \dim Y$?

- One can assume that D is spanned, by taking the Iitaka fibration of D . Hence, $D = f^*H$ where $f: X \rightarrow Y$ is an algebraic fiber space, and H ample on Y .
- Insensitive upon taking birational models, hence assume X and Y smooth.

Question

$f: X \rightarrow Y$ algebraic fiber space. $m_0 K_X - f^*H$ pseudo-effective for some m_0 . Is $\kappa(X) \geq \dim Y$?

- Actually, the prediction is that $mK_X - f^*H$ is effective for some $m > 0$. If this is the case, then $\kappa(X) = \kappa(F) + \dim Y$ by Mori, and $\kappa(F) \geq 0$ since K_F is pef (Non-vanishing!).

Some reductions

- One can assume that D is spanned, by taking the Iitaka fibration of D . Hence, $D = f^*H$ where $f: X \rightarrow Y$ is an algebraic fiber space, and H ample on Y .
- Insensitive upon taking birational models, hence assume X and Y smooth.

Question

$f: X \rightarrow Y$ algebraic fiber space. $m_0 K_X - f^*H$ pseudo-effective for some m_0 . Is $\kappa(X) \geq \dim Y$?

- Actually, the prediction is that $mK_X - f^*H$ is effective for some $m > 0$. If this is the case, then $\kappa(X) = \kappa(F) + \dim Y$ by Mori, and $\kappa(F) \geq 0$ since K_F is pef (Non-vanishing!).
- Using more reductions, it is enough to assume $\kappa(F) = 0$.

Theorem (Schnell)

Let $f: X \rightarrow Y$ be an algebraic fiber space between smooth projective varieties. Assume $\kappa(F) \geq 0$ and suppose that $L_0 = m_0 K_X - f^* H$ is **peff** for some $m_0 > 0$, and **assume that K_Y is **peff****. Then $m K_X - f^* H$ is effective for some $m > 0$.

Theorem (Schnell)

Let $f: X \rightarrow Y$ be an algebraic fiber space between smooth projective varieties. Assume $\kappa(F) \geq 0$ and suppose that $L_0 = m_0 K_X - f^* H$ is **peff** for some $m_0 > 0$, and **assume that K_Y is peff**. Then $mK_X - f^* H$ is effective for some $m > 0$.

- Key ingredient: Singular hermitian metrics on pluri-adjoint bundles by Păun–Takayama

Theorem (Schnell)

Let $f: X \rightarrow Y$ be an algebraic fiber space between smooth projective varieties. Assume $\kappa(F) \geq 0$ and suppose that $L_0 = m_0 K_X - f^* H$ is **peff** for some $m_0 > 0$, and **assume that K_Y is peff**. Then $m K_X - f^* H$ is effective for some $m > 0$.

- Key ingredient: Singular hermitian metrics on pluri-adjoint bundles by Păun–Takayama
- Start with a semi-positive metric φ_0 on $L_0 = m_0 K_X - f^* H$, but we have **no control** on the singularities!

Theorem (Schnell)

Let $f: X \rightarrow Y$ be an algebraic fiber space between smooth projective varieties. Assume $\kappa(F) \geq 0$ and suppose that $L_0 = m_0 K_X - f^* H$ is **peff** for some $m_0 > 0$, and **assume that K_Y is peff**. Then $m K_X - f^* H$ is effective for some $m > 0$.

- Key ingredient: Singular hermitian metrics on pluri-adjoint bundles by Păun–Takayama
- Start with a semi-positive metric φ_0 on $L_0 = m_0 K_X - f^* H$, but we have **no control** on the singularities!
- One constructs a ‘Bergman-kernel’ metric on

$$L_1 = m_1 K_{X/Y} + (m_0 K_X - f^* H)$$

with **better** regularity, as $m_1 \rightarrow \infty$.

Theorem (Schnell)

Let $f: X \rightarrow Y$ be an algebraic fiber space between smooth projective varieties. Assume $\kappa(F) \geq 0$ and suppose that $L_0 = m_0 K_X - f^* H$ is **peff** for some $m_0 > 0$, and **assume that K_Y is peff**. Then $mK_X - f^* H$ is effective for some $m > 0$.

- Key ingredient: Singular hermitian metrics on pluri-adjoint bundles by Păun–Takayama
- Start with a semi-positive metric φ_0 on $L_0 = m_0 K_X - f^* H$, but we have **no control** on the singularities!
- One constructs a ‘Bergman-kernel’ metric on

$$L_1 = m_1 K_{X/Y} + (m_0 K_X - f^* H)$$

with **better** regularity, as $m_1 \rightarrow \infty$.

- However, we need to assume that K_Y is **peff**, due to the **relative** pluri-canonical bundle $K_{X/Y}$.

Bergman-kernel metric (absolute version)

- X smooth projective, (L, h) semi-positive line bundle

Bergman-kernel metric (absolute version)

- X smooth projective, (L, h) semi-positive line bundle
- $v \in H^0(X, mK_X + L)$,

$$I(v)^{2/m} := \int_X |v|_h^{2/m}.$$

Bergman-kernel metric (absolute version)

- X smooth projective, (L, h) semi-positive line bundle
- $v \in H^0(X, mK_X + L)$,

$$I(v)^{2/m} := \int_X |v|_h^{2/m}.$$

- For σ local section of $mK_X + L$ near x ,

$$|\sigma|_{h_{\text{BK}}, x} = \inf\{I(v) : v(x) = \sigma(x), v \in H^0(X, mK_X + L)\}^*.$$

Bergman-kernel metric (absolute version)

- X smooth projective, (L, h) semi-positive line bundle
- $v \in H^0(X, mK_X + L)$,

$$I(v)^{2/m} := \int_X |v|_h^{2/m}.$$

- For σ local section of $mK_X + L$ near x ,

$$|\sigma|_{h_{\text{BK}}, x} = \inf\{I(v) : v(x) = \sigma(x), v \in H^0(X, mK_X + L)\}^*.$$

- This metric is by definition, semi-positive. The length $I(v)$ becomes finite as $m \rightarrow \infty$.

Bergman-kernel metric (absolute version)

- X smooth projective, (L, h) semi-positive line bundle
- $v \in H^0(X, mK_X + L)$,

$$I(v)^{2/m} := \int_X |v|_h^{2/m}.$$

- For σ local section of $mK_X + L$ near x ,

$$|\sigma|_{h_{\text{BK}}, x} = \inf\{I(v) : v(x) = \sigma(x), v \in H^0(X, mK_X + L)\}^*.$$

- This metric is by definition, semi-positive. The length $I(v)$ becomes finite as $m \rightarrow \infty$.
- If $h^0(X, mK_X + L) = 1$, then the inf goes away, and the curvature of h_{BK} is just $[v = 0]$, where $v \in H^0(X, mK_X + L)$.

Motivation of this project

- The metric on $L_1 = m_1 K_{X/Y} + (m_0 K_X - f^* H)$ has nice singularities on the **general** fibre.

Motivation of this project

- The metric on $L_1 = m_1 K_{X/Y} + (m_0 K_X - f^* H)$ has nice singularities on the **general** fibre.
- However, the metric tends to be singular near the singular fibres.

Motivation of this project

- The metric on $L_1 = m_1 K_{X/Y} + (m_0 K_X - f^* H)$ has nice singularities on the **general** fibre.
- However, the metric tends to be singular near the singular fibres.
- Heuristically, a morphism to negative K_Y has a lot of singular fibers (hyperbolicity).

Motivation of this project

- The metric on $L_1 = m_1 K_{X/Y} + (m_0 K_X - f^* H)$ has nice singularities on the **general** fibre.
- However, the metric tends to be singular near the singular fibres.
- Heuristically, a morphism to negative K_Y has a lot of singular fibers (hyperbolicity).
- Can we examine the contribution of the singular fibers to overcome the non-pseudo-effectivity of K_Y ?

Canonical bundle formula

- $f: X \rightarrow Y$ with $\kappa(F) = 0$, and assume $m_0 K_X - f^* H$ pseudo-effective.
- Write $K_X \sim_{\mathbb{Q}} f^*(K_Y + B_Y + M_Y) + \Delta$, where

$$\kappa(X) = \kappa(Y, K_Y + B_Y + M_Y).$$

It is enough to show that $K_Y + B_Y + M_Y$ is big!

Canonical bundle formula

- $f: X \rightarrow Y$ with $\kappa(F) = 0$, and assume $m_0 K_X - f^* H$ pseudo-effective.
- Write $K_X \sim_{\mathbb{Q}} f^*(K_Y + B_Y + M_Y) + \Delta$, where

$$\kappa(X) = \kappa(Y, K_Y + B_Y + M_Y).$$

It is enough to show that $K_Y + B_Y + M_Y$ is big!

- If $\Delta = 0$, then the metric positivity of K_X **immediately descends** to $K_Y + B_Y + M_Y$, hence $K_Y + B_Y + M_Y$ big.

Canonical bundle formula

- $f: X \rightarrow Y$ with $\kappa(F) = 0$, and assume $m_0 K_X - f^* H$ pseudo-effective.
- Write $K_X \sim_{\mathbb{Q}} f^*(K_Y + B_Y + M_Y) + \Delta$, where

$$\kappa(X) = \kappa(Y, K_Y + B_Y + M_Y).$$

It is enough to show that $K_Y + B_Y + M_Y$ is big!

- If $\Delta = 0$, then the metric positivity of K_X **immediately descends** to $K_Y + B_Y + M_Y$, hence $K_Y + B_Y + M_Y$ big.
- Our only enemy is Δ !

Canonical bundle formula

- $f: X \rightarrow Y$ with $\kappa(F) = 0$, and assume $m_0 K_X - f^* H$ pseudo-effective.
- Write $K_X \sim_{\mathbb{Q}} f^*(K_Y + B_Y + M_Y) + \Delta$, where

$$\kappa(X) = \kappa(Y, K_Y + B_Y + M_Y).$$

It is enough to show that $K_Y + B_Y + M_Y$ is big!

- If $\Delta = 0$, then the metric positivity of K_X **immediately descends** to $K_Y + B_Y + M_Y$, hence $K_Y + B_Y + M_Y$ big.
- Our only enemy is Δ !
- I will present two possible strategies of dealing with this Δ

Main result

Theorem

Let $f: X \rightarrow Y$ be algebraic fiber spaces between smooth projective varieties,

$\kappa(F) = 0$ and $L_0 = m_0 K_X - f^* H$ is peff for some $m_0 > 0$. Write

$$K_X \sim_{\mathbb{Q}} f^*(K_Y + B_Y + M_Y) - \Delta.$$

Assume either of the 2 condition holds:

- ① $K_Y + (1 - \epsilon)B_Y$ peff for some $\epsilon > 0$, or
- ② The class $\{K_F\}$ is *rigid* for a general fibre.

Then $K_Y + B_Y + M_Y$ is big.

First Idea to handle Δ

- Take m_0 and m_1 sufficiently divisible and $m_1 \gg m_0$. Consider the Bergman-kernel metric φ_1 on

$$L_1 = m_1 K_{X/Y} + m_0 K_X - f^* H$$

- The Bergman-kernel metric is super explicit when $\kappa(F) = 0$.
- Use Siu decomposition on L_1 , i.e.
- If $T_1 = dd^c \varphi_1$, then $L_1 - \sum_W \nu_W(T_1)[W]$ is still pseudo-effective, where $\nu_W(T_1)$ is the generic Lelong number of T_1 along W (analytic analogue for multiplicity).
- We have a precise control on the Lelong numbers along some components of Δ .

First idea: Bergman-kernel metric I

- From the horizontal divisors: $L_1 - (m_1 + m_0)\Delta^h$ peff, essentially from the definition of the Bergman-kernel metric.
- This immediately recovers Schnell's assumption since if K_Y peff, then

$$\left(m_1 K_{X/Y} + m_0 K_X - f^* H - (m_1 + m_0) \Delta^h \right) + m_1 K_Y$$

is peff, and this descends to

$$(m_1 + m_0)(K_Y + B_Y + M_Y) - f^* H$$

being peff.

First idea: Bergman-kernel metric II

- Upshot: We can subtract **more** from the vertical divisors.
- Conclusion:

$$m_1 K_{X/Y} + m_0 K_X - f^* H - (m_1 + m_0) \Delta^h - \sum_E \alpha_E E$$

is peff , where E runs through the vertical divisors in the singular fibres.

- α_E is related to certain volume asymptotics, which is well understood due to Takayama, or Boucksom–Jonsson
- We only have to assume that $K_Y + (1 - \epsilon) B_Y$ peff , instead K_Y being pseff .
- Unfortunately, this is not always the case (semi-stable family of elliptic curves with large variation)

Second idea: Rigid currents

- We start with φ_0 a metric on $m_0 K_X - f^* H$.

Second idea: Rigid currents

- We start with φ_0 a metric on $m_0 K_X - f^* H$.
- Even though we don't have a priori no control on φ_0 , the metric conjecturally behaves nicely fiberwise ($\varphi_0|_{X_y}$).

Second idea: Rigid currents

- We start with φ_0 a metric on $m_0 K_X - f^* H$.
- Even though we don't have a priori no control on φ_0 , the metric conjecturally behaves nicely fiberwise ($\varphi_0|_{X_y}$).
- For example, if the general fibers are honest K -trivial varieties, then $\varphi_0|_{X_y}$ should be a constant (or $\equiv -\infty$)

Second idea: Rigid currents

- We start with φ_0 a metric on $m_0 K_X - f^* H$.
- Even though we don't have a priori no control on φ_0 , the metric conjecturally behaves nicely fiberwise ($\varphi_0|_{X_y}$).
- For example, if the general fibers are honest K -trivial varieties, then $\varphi_0|_{X_y}$ should be a constant (or $\equiv -\infty$)

Definition (Rigidity)

Let X be a smooth projective variety with $\kappa(X) = 0$. The class K_X is *rigid* if there is a unique closed positive $(1,1)$ -current T such that $T \in \{K_X\}$.

Second idea: Rigid currents

- We start with φ_0 a metric on $m_0 K_X - f^* H$.
- Even though we don't have a priori no control on φ_0 , the metric conjecturally behaves nicely fiberwise ($\varphi_0|_{X_y}$).
- For example, if the general fibers are honest K -trivial varieties, then $\varphi_0|_{X_y}$ should be a constant (or $\equiv -\infty$)

Definition (Rigidity)

Let X be a smooth projective variety with $\kappa(X) = 0$. The class K_X is *rigid* if there is a unique closed positive $(1,1)$ -current T such that $T \in \{K_X\}$.

- Abundance \implies Rigidity of $K_X \implies$ Campana–Peternell conjecture for X

Second idea: Rigid currents

- We start with φ_0 a metric on $m_0 K_X - f^* H$.
- Even though we don't have a priori no control on φ_0 , the metric conjecturally behaves nicely fiberwise ($\varphi_0|_{X_y}$).
- For example, if the general fibers are honest K -trivial varieties, then $\varphi_0|_{X_y}$ should be a constant (or $\equiv -\infty$)

Definition (Rigidity)

Let X be a smooth projective variety with $\kappa(X) = 0$. The class K_X is *rigid* if there is a unique closed positive $(1,1)$ -current T such that $T \in \{K_X\}$.

- Abundance \implies Rigidity of $K_X \implies$ Campana–Peternell conjecture for X
- If $\varphi_0|_{X_y} \not\equiv -\infty$, then conjecturally, we essentially have a single choice for $\varphi_0|_{X_y}$.

Second idea: Rigid currents

- We start with φ_0 a metric on $m_0 K_X - f^* H$.
- Even though we don't have a priori no control on φ_0 , the metric conjecturally behaves nicely fiberwise ($\varphi_0|_{X_y}$).
- For example, if the general fibers are honest K -trivial varieties, then $\varphi_0|_{X_y}$ should be a constant (or $\equiv -\infty$)

Definition (Rigidity)

Let X be a smooth projective variety with $\kappa(X) = 0$. The class K_X is *rigid* if there is a unique closed positive $(1,1)$ -current T such that $T \in \{K_X\}$.

- Abundance \implies Rigidity of $K_X \implies$ Campana–Peternell conjecture for X
- If $\varphi_0|_{X_y} \not\equiv -\infty$, then conjecturally, we essentially have a single choice for $\varphi_0|_{X_y}$.
- This immediately allows us to deal with the horizontal parts (and some of the vertical parts) and get bigness of $K_X + P + M$.

Second idea: Rigid currents

- This leads us to the following inductive approach:
 - Non-vanishing in dimension n
 - + Rigidity of K_X (for $\kappa(X) = 0$) in dimension $n - 1$
 - \implies Campana–Peternell conjecture in dimension n .
- Unconditional result for 4-folds.

Thank you