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A projective manifold, by the Kodaira embedding theorem, is a
compact complex manifold which can be polarized by a rational
closed positive (1,1)-class (i.e. an ample line bundle).

Kahler geometry is a generalization of projective geometry where
rational positive classes are replaced by transcendental positive
classes:

Definition
A Kéhler manifold is a complex manifold admitting a (real) closed

positive (1,1)-form w, called a Kihler form.

A Kahler class plays a similar role in Kdhler geometry as an
ample class does in projective geometry, which endows the Kahler
manifolds with numerical properties of positivity.
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Bimeromorphic Geometry

Similar to projective geometry, the nef cone can then be defined as
the closure of the Kahler cone:

Nef(X) = K € HM(X,R)

> A key feature of analytic varieties is the scarcity of
subvarieties. (There exist analytic manifolds admitting no
nontrivial subvarieties.) As a result, usually it is not sufficient
to test nefness using only curves.

> To fix this, we introduce 'transcendental curves’, i.e. positive
(1,1)-currents. Let NA(X) be the closed cone generated by
positive (1,1)-currents on X. Then

Theorem
NA(X) and Nef(X) are dual to each other.



The MMP for Kahler Varieties

One breakthrough in bimeromorphic geometry is the establishment
of the minimal model program for Kahler threefolds:

Theorem (Horing, Peternell 2016)

Let X be a normal Q-factorial compact Kahler threefold with
terminal singularities. If Kx is pseudoeffective, then X has a
minimal model.

Theorem (Das, Hacon 2022)

Let (X, B) be a dIt pair where X is a Q-factorial compact Kahler
3-fold. If Kx + B is pseudo-effective, then there exists a finite
sequence of flips and divisorial contractions

¢ X -=» Xy --» -+ —=» X, such that Kx, + ¢.B is nef.
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Then it is natural to ask if the abundance holds:

Conjecture

Let (X, A) be a Kahler Ic pair. If Kx + A is nef, then

Im(Kx + A)| is base point free for sufficiently divisible m € N.

In dimension 3, abundance and log abundance for Kahler varieties
are established by Campana, Horing, Peternell, Das and Ou.
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We use a different approach on the abundance problem. Our
method can recover the abundance for Kahler threefold in the case

a(X) # 0:
Theorem

Let (X, A) be a kit Q-factorial Kahler threefold with a(X) # 0. If
Kx + A is nef, then Kx + A is semiample.

Our idea is to reduce abundance for Kahler varieties to abundance
for projective varieties via the algebraic reduction map.
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Algebraic Reduction

The algebraic dimension a(X) describes the richness of
meromorphic functions on an analytic variety:

Definition

Let X be a compact analytic variety. The algebraic dimension a(X)

is the transcendence degree of the field extension C(X)/C, where
C(X) is the field of meromorphic functions of X.

In other words, focusing only on the meromorphic functions, X
looks like an algebraic variety of dimension a(X).
Indeed there is a natural map, called the algebraic reduction map:

X--+V

such that V is projective and C(X) = C(V).
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Let (X, A) be a klt Q-factorial K&hler threefold.

Idea

Reduce the abundance for the Kahler variety X to the abundance
for a projective variety along the algebraic reduction fibration
X --» V.

To realize this idea, there turns out to be two problems:

» Problem 1: The algebraic reduction map is not defined
everywhere. After resolution of the indeterminacy, the new
canonical divisor on the higher model is no longer nef.

» Problem 2: We need a theory to compare the canonical
divisors, Ky and Ky, along the algebraic reduction map.

Once these problems get solved, one can follow Florin Ambro’s
argument to obtain abundance on X.
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To solve this problem, we need a birational version of the
abundance conjecture. One way is to establish a decomposition
theory to separate out the negative part.

For a divisor D on X, a Zariski decomposition (T. Fujita 1984) is
a decomposition of D on a model 7: Y — X:

™D=P+N

such that P is nef and N > 0.

» With the decomposition theory, we can state abundance for
the positive part P even if Kx is not nef.

> Zariski decompositions do not always exist in general.
However, we only need the pullback compatibility.



The Canonical Bundle Formula

> We need a theory to compare the canonical divisors Ky and
Ky along the algebraic reduction map.

The answer is the canonical bundle formula. For a K-trivial fibration
f:(X,A) — Y, the canonical bundle formula takes the form:

Kx + A ~q f*(K\/ + By + /\//\/)

» The discriminant divisor B\, describes singularities of the
fibers. Roughly speaking, it measures how far a fiber is from
being log canonical.

» The moduli divisor My, describes the variation of the fibers.
So it is natural to expect My, to be 'positive’ in some sense.

» Florin Ambro proves b-nefness of the moduli divisor for
projective varieties in 2002.
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The answer is the canonical bundle formula. For a K-trivial fibration

f:(X,A) =Y, the canonical bundle formula takes the form:

Kx + A ~q f*(K\/ + By + /\//\/)

» The discriminant divisor B\, describes singularities of the
fibers. Roughly speaking, it measures how far a fiber is from
being log canonical.

» The moduli divisor My, describes the variation of the fibers.
So it is natural to expect My, to be 'positive’ in some sense.

» Florin Ambro proves b-nefness of the moduli divisor for
projective varieties in 2002.



Strategy

Let (X, A) be a klt Q-factorial Kahler threefold.

Idea

Reduce the abundance problem for the Kahler variety X to the
abundance problem for a projective variety along the algebraic
reduction fibration X --» V.

To realize this idea, there turns out to be two problems:

» Problem 1: The algebraic reduction map is not defined
everywhere. After resolution of the indeterminacy, the new
canonical divisor on the higher model is no longer nef.
(Zariski decomposition theory)

» Problem 2: We need a theory to compare the canonical
divisors, Ky and Ky, along the algebraic reduction map.
(Canonical Bundle Formula)
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be a Kahler variety. Consider the algebraic reduction fibration

F—=X--V

» Roughly speaking, we want to use the same argument to show
if abundance holds for F, V, then it holds for X.

» On the one hand, the base variety V is projective. On the
other hand, though the fiber F might be analytic, it has lower
dimension which is suitable for an inductive argument.
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Higher Dimension

We want to generalize the argument to higher dimensions. Let X
be a Kahler variety. Consider the algebraic reduction fibration

F—=X--V

» Roughly speaking, we want to use the same argument to show
if abundance holds for F, V, then it holds for X.

» On the one hand, the base variety V is projective. On the
other hand, though the fiber F might be analytic, it has lower
dimension which is suitable for an inductive argument.

» One obstacle of this approach is that we have no control of
the locus of indeterminacy.
We would like to ask the following question:



Almost Holomorphicity

Definition
Let f: X --» Y be a meromorphic map between normal compact
varieties. Let X° C X be the maximal open subset where f is

holomorphic. The map f is said to be almost holomorphic if
some fibers of the restriction f|xo are compact.

Conjecture

Let X be a compact Kahler manifold. Then the algebraic reduction
map is almost holomorphic.

It is known for threefolds and some special cases in higher
dimensions.



Thank you!



