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Bimeromorphic Geometry

A projective manifold, by the Kodaira embedding theorem, is a
compact complex manifold which can be polarized by a rational
closed positive (1, 1)-class (i.e. an ample line bundle).

Kähler geometry is a generalization of projective geometry where
rational positive classes are replaced by transcendental positive
classes:

Definition
A Kähler manifold is a complex manifold admitting a (real) closed
positive (1, 1)-form ω, called a Kähler form.

A Kähler class plays a similar role in Kähler geometry as an
ample class does in projective geometry, which endows the Kähler
manifolds with numerical properties of positivity.
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Bimeromorphic Geometry

Similar to projective geometry, the nef cone can then be defined as
the closure of the Kähler cone:

Nef(X ) = K ⊆ H1,1(X ,R)

▶ A key feature of analytic varieties is the scarcity of
subvarieties. (There exist analytic manifolds admitting no
nontrivial subvarieties.) As a result, usually it is not sufficient
to test nefness using only curves.

▶ To fix this, we introduce ’transcendental curves’, i.e. positive
(1, 1)-currents. Let NA(X ) be the closed cone generated by
positive (1, 1)-currents on X . Then

Theorem
NA(X ) and Nef(X ) are dual to each other.



Bimeromorphic Geometry

Similar to projective geometry, the nef cone can then be defined as
the closure of the Kähler cone:

Nef(X ) = K ⊆ H1,1(X ,R)

▶ A key feature of analytic varieties is the scarcity of
subvarieties. (There exist analytic manifolds admitting no
nontrivial subvarieties.)

As a result, usually it is not sufficient
to test nefness using only curves.

▶ To fix this, we introduce ’transcendental curves’, i.e. positive
(1, 1)-currents. Let NA(X ) be the closed cone generated by
positive (1, 1)-currents on X . Then

Theorem
NA(X ) and Nef(X ) are dual to each other.



Bimeromorphic Geometry

Similar to projective geometry, the nef cone can then be defined as
the closure of the Kähler cone:

Nef(X ) = K ⊆ H1,1(X ,R)

▶ A key feature of analytic varieties is the scarcity of
subvarieties. (There exist analytic manifolds admitting no
nontrivial subvarieties.) As a result, usually it is not sufficient
to test nefness using only curves.

▶ To fix this, we introduce ’transcendental curves’, i.e. positive
(1, 1)-currents. Let NA(X ) be the closed cone generated by
positive (1, 1)-currents on X . Then

Theorem
NA(X ) and Nef(X ) are dual to each other.



Bimeromorphic Geometry

Similar to projective geometry, the nef cone can then be defined as
the closure of the Kähler cone:

Nef(X ) = K ⊆ H1,1(X ,R)

▶ A key feature of analytic varieties is the scarcity of
subvarieties. (There exist analytic manifolds admitting no
nontrivial subvarieties.) As a result, usually it is not sufficient
to test nefness using only curves.

▶ To fix this, we introduce ’transcendental curves’, i.e. positive
(1, 1)-currents. Let NA(X ) be the closed cone generated by
positive (1, 1)-currents on X . Then

Theorem
NA(X ) and Nef(X ) are dual to each other.



The MMP for Kähler Varieties

One breakthrough in bimeromorphic geometry is the establishment
of the minimal model program for Kähler threefolds:

Theorem (Höring, Peternell 2016)

Let X be a normal Q-factorial compact Kähler threefold with
terminal singularities. If KX is pseudoeffective, then X has a
minimal model.

Theorem (Das, Hacon 2022)

Let (X ,B) be a dlt pair where X is a Q-factorial compact Kähler
3-fold. If KX + B is pseudo-effective, then there exists a finite
sequence of flips and divisorial contractions
ϕ : X 99K X1 99K · · · 99K Xn such that KXn + ϕ∗B is nef.



Abundance for Kähler Varieties

Then it is natural to ask if the abundance holds:

Conjecture

Let (X ,∆) be a Kähler lc pair. If KX +∆ is nef, then
|m(KX +∆)| is base point free for sufficiently divisible m ∈ N.

In dimension 3, abundance and log abundance for Kähler varieties
are established by Campana, Höring, Peternell, Das and Ou.
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Abundance for Kähler Varieties

We use a different approach on the abundance problem. Our
method can recover the abundance for Kähler threefold in the case
a(X ) ̸= 0:

Theorem
Let (X ,∆) be a klt Q-factorial Kähler threefold with a(X ) ̸= 0. If
KX +∆ is nef, then KX +∆ is semiample.

Our idea is to reduce abundance for Kähler varieties to abundance
for projective varieties via the algebraic reduction map.
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Algebraic Reduction

The algebraic dimension a(X ) describes the richness of
meromorphic functions on an analytic variety:

Definition
Let X be a compact analytic variety. The algebraic dimension a(X )
is the transcendence degree of the field extension C(X )/C, where
C(X ) is the field of meromorphic functions of X .

In other words, focusing only on the meromorphic functions, X
looks like an algebraic variety of dimension a(X ).
Indeed there is a natural map, called the algebraic reduction map:

X 99K V

such that V is projective and C(X ) = C(V ).
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Strategy

Let (X ,∆) be a klt Q-factorial Kähler threefold.

Idea
Reduce the abundance for the Kähler variety X to the abundance
for a projective variety along the algebraic reduction fibration
X 99K V .

To realize this idea, there turns out to be two problems:
▶ Problem 1: The algebraic reduction map is not defined

everywhere. After resolution of the indeterminacy, the new
canonical divisor on the higher model is no longer nef.

▶ Problem 2: We need a theory to compare the canonical
divisors, KY and KV , along the algebraic reduction map.

Once these problems get solved, one can follow Florin Ambro’s
argument to obtain abundance on X .
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The Zariski Decomposition

▶ Problem 1: The algebraic reduction map is not defined
everywhere. After resolution of the indeterminacy, the new
canonical divisor on the higher model is no longer nef.

To solve this problem, we need a birational version of the
abundance conjecture. One way is to establish a decomposition
theory to separate out the negative part.
For a divisor D on X , a Zariski decomposition (T. Fujita 1984) is
a decomposition of D on a model π : Y → X :

π∗D = P + N

such that P is nef and N ≥ 0.
▶ With the decomposition theory, we can state abundance for

the positive part P even if KX is not nef.
▶ Zariski decompositions do not always exist in general.

However, we only need the pullback compatibility.
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The Canonical Bundle Formula

▶ We need a theory to compare the canonical divisors KY and
KV along the algebraic reduction map.

The answer is the canonical bundle formula. For a K-trivial fibration
f : (X ,∆) → Y , the canonical bundle formula takes the form:

KX +∆ ∼Q f ∗(KV + BV +MV )

▶ The discriminant divisor BV describes singularities of the
fibers. Roughly speaking, it measures how far a fiber is from
being log canonical.

▶ The moduli divisor MV describes the variation of the fibers.
So it is natural to expect MV to be ’positive’ in some sense.

▶ Florin Ambro proves b-nefness of the moduli divisor for
projective varieties in 2002.
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Strategy

Let (X ,∆) be a klt Q-factorial Kähler threefold.

Idea
Reduce the abundance problem for the Kähler variety X to the
abundance problem for a projective variety along the algebraic
reduction fibration X 99K V .

To realize this idea, there turns out to be two problems:
▶ Problem 1: The algebraic reduction map is not defined

everywhere. After resolution of the indeterminacy, the new
canonical divisor on the higher model is no longer nef.
(Zariski decomposition theory)

▶ Problem 2: We need a theory to compare the canonical
divisors, KY and KV , along the algebraic reduction map.
(Canonical Bundle Formula)



Higher Dimension

We want to generalize the argument to higher dimensions. Let X
be a Kähler variety. Consider the algebraic reduction fibration

F → X 99K V

▶ Roughly speaking, we want to use the same argument to show
if abundance holds for F ,V , then it holds for X .

▶ On the one hand, the base variety V is projective. On the
other hand, though the fiber F might be analytic, it has lower
dimension which is suitable for an inductive argument.

▶ One obstacle of this approach is that we have no control of
the locus of indeterminacy.
We would like to ask the following question:
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Almost Holomorphicity

Definition
Let f : X 99K Y be a meromorphic map between normal compact
varieties. Let X 0 ⊆ X be the maximal open subset where f is
holomorphic. The map f is said to be almost holomorphic if
some fibers of the restriction f |X 0 are compact.

Conjecture

Let X be a compact Kähler manifold. Then the algebraic reduction
map is almost holomorphic.

It is known for threefolds and some special cases in higher
dimensions.



Thank you!


