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Overview

1. Special cycles on orthogonal modular varieties

2. Uniruledness

3. Special cycles under “tautological maps”

4. Cones of divisors
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Orthogonal modular varieties

• Λ = even lattice of signature (2, n)

• DΛ = one of two connected components of{
[Z ] ∈ P (VC)

∣∣⟨Z ,Z ⟩ = 0, ⟨Z ,Z ⟩ > 0
}
.

This is a Hermitian symmetric domain of Type IV.

• O+(Λ) = automorphisms of Λ that fix DΛ.

• Õ+ (Λ) ⊂ O+(Λ) subgroup of automorphisms with trivial action on D(Λ) = Λ∨/Λ.

Orthogonal modular variety

FΛ = DΛ/Õ
+ (Λ)
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Orthogonal modular varieties: examples

• Λ = even lattice of signature (2, n)

Orthogonal modular variety

FΛ = DΛ/Õ
+ (Λ)

K3 surfaces

Λ = U⊕2 ⊕ E8(−1)⊕2 ⊕ Zℓ, with ⟨ℓ, ℓ⟩ = −2d

FΛ = moduli space of quasi-polarized K3 surfaces (S ,H) of degree 2d

Hyperkähler manifolds

For various choices of Λ

FΛ = (finite cover of) partial compactification of moduli of HK manifolds
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Noether–Lefschetz divisors/Heegner divisors on FΛ

In K3 setting: Noether–Lefschetz divisors

Dh,a = {(S ,H) | ∃β ∈ PicQ (FΛ) s.t. β2 = 2h − 2, β.H = a}.

Examples

• D0,0 = nodal locus

(there is a (−2)-curve β s.t. β.H = 0)

• D1,1=unigonal locus

(there is a curve β with β2 = 0 and β.H = 1)
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Noether–Lefschetz divisors/Heegner divisors on FΛ

In K3 setting: Noether–Lefschetz divisors

Dh,a = {(S ,H) | ∃β ∈ Pic (S) s.t. β2 = 2h − 2, β.H = a}.

In general setting: Heegner divisors

For fixed v ∈ Λ∨ ⊂ ΛQ

Dv = v⊥ ∩ DΛ = {[Z ] ∈ DΛ |⟨Z , v⟩ = 0} .

Let ℓ+ Λ ∈ D(Λ) = Λ∨/Λ and m ∈ ⟨ℓ,ℓ⟩
2 + Z non-positive, then get Õ+ (Λ)-invariant cycle∑

v∈ℓ+Λ
⟨v,v⟩

2
=m

Dv (1)

=⇒ descends to a Q-Cartier divisor Hm,ℓ on FΛ = DΛ/Õ
+ (Λ) called a Heegner divisor.
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Heegner divisors generate PicQ (FΛ)

Theorem (Bergeron–Li–Millson–Moeglin)

Let Λ be an even lattice of signature (2, n) with n ≥ 3 splitting off two copies of the
hyperbolic plane. Then

PicQ (FΛ) = ⟨Heegner divisors⟩.

In particular, in the K3 setting this says

PicQ (FΛ) = ⟨Noether–Lefschetz divisors⟩.
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Relationship to modular forms

• The metaplectic group Mp2(Z) is a double cover of SL2(Z) of pairs (A, ϕ(τ)) where
A ∈ SL2 (Z), ϕ(τ) a choice of a square root cτ + d on H.

• The Weil representation of Mp2(Z) attached to Λ is a canonical representation

ρΛ : Mp2(Z) −→ GL (C [D(Λ)]) .

Vector-valued modular forms

A holomorphic function
f : H −→ C [D(Λ)]

is a vector-valued (elliptic) modular form of weight k and type ρΛ if for all
g = (A, ϕ) ∈ Mp2 (Z) and τ ∈ H

f (Aτ) = ϕ(τ)2kρΛ(g) · f (τ)

and f is holomorphic at the cusp at ∞.
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Relationship to modular forms

Vector-valued modular forms

A holomorphic function
f : H −→ C [D(Λ)]

is a vector-valued (elliptic) modular form of weight k and type ρΛ if for all
g = (A, ϕ) ∈ Mp2 (Z) and τ ∈ H we have f (Aτ) = ϕ(τ)2kρΛ(g) · f (τ) and f is
holomorphic at the cusp at ∞.

• Mk
Λ = Q-vector space of vector-valued modular forms of weight k and type ρΛ

• Elements f ∈ Mk
Λ have Fourier expansions

f =
∑

ℓ∈D(Λ)

∑
m∈q(ℓ)+Z

m≥0

am,ℓq
meℓ,

where am,ℓ ∈ Q, qm = exp(2πimτ), τ ∈ H, and eℓ standard generators of C[D(Λ)].
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Relationship to modular forms

• Mk
Λ = Q-vector space of vector-valued modular forms of weight k and type ρΛ

Theorem (Kudla–Millson)∑
ℓ∈D(Λ)

∑
m∈q(ℓ)+Z

m≥0

[Hm,ℓ]q
meℓ ∈ Mk

Λ ⊗ H2(FΛ,Q) (2)

The [Hm,ℓ] are cohomology classes of Heegner divisors.

• Equivalently, for every functional F ∈ (H2(FΛ,Q))∨, the series∑
ℓ∈D(Λ)

∑
m∈q(ℓ)+Z

m≤0

F ([Hm,ℓ])q
meℓ

converges and is a modular form in Mk
Λ .
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Relationship to modular forms

• Mk
Λ = Q-vector space of vector-valued modular forms of weight k and type ρΛ

• Kudla–Millson implies there is a map

(H2(FΛ,Q))∨ → Mk
Λ

F 7→
∑

ℓ∈D(Λ)

∑
m∈q(ℓ)+Z

m≤0

F ([Hm,ℓ])q
meℓ.

• Dualizing yields

ψ :
(
Mk

Λ

)∨
→ H2(FΛ,Q)

cm,ℓ 7→ [H−m,ℓ]
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Relationship to modular forms

UPSHOT: There is a map of Q-vector spaces

ψ :
(
Mk

Λ

)∨
→ H2(FΛ,Q)

cm,ℓ 7→ [H−m,ℓ]

Remark

The Bergeron–Li–Millson–Moeglin result that (for Λ splitting 2 copies of U)

PicQ (FΛ) = ⟨Hm,ℓ⟩

in fact is showing that ψ :
(
Mk,◦

Λ

)∨
→ H2(FΛ,Q) is an isomorphism, where k = n+2

2 .

(Injectivity already shown by Bruinier).
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Higher codimension: special cycles

• Sg = symmetric half-integral g × g -matrices (diagonal entries integer).
• For v = (v1, . . . , vg ) ∈ (Λ∨)g , denote by v⊥ the set of points in DΛ which are

orthogonal to every entry of v .
• The moment matrix q(v) of v is q(v) = 1

2

(
⟨va, vb⟩

)
a,b=1,...,g

. Note that if v ∈ Λg ,

then q(v) ∈ Sg .

Special Cycles

Let ℓ ∈ (D(L))g and let T ∈ q(ℓ) + Sg . The formal sum∑
v∈ℓ+Λg

q(v)=T

v⊥

is a locally finite Õ+ (Λ)-invariant cycle in DΛ.

=⇒ Descends to a codimension g special cycle Z (T , ℓ) on FΛ.
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Higher codimension: modular forms

• Hg = Siegel upper half-space of genus g , Sp2g (R) acts on Hg

• ρΛ,g =Weil rep. of the metaplectic cover Mp2g (Z) of Sp2g (Z) acting on C[D(Λ)g ]

Definition: Higher genus modular forms

A vector-valued (Siegel) modular form of weight k and genus g with respect to the Weil
representation ρΛ,g is a holomorphic function f : Hg → C[D(Λ)g ] such that

f (γ · τ) = ϕ(τ)2kρΛ,g (γ)f (τ) for all γ = (M, ϕ) ∈ Mp2g (Z).

If g = 1, then we also require that f is holomorphic at ∞.

• Mk
g ,Λ = Q-vector space of such modular forms.

• Every f ∈ Mk
g ,Λ admits a Fourier expansion of the form

f (τ) =
∑
ℓ∈Dg

Λ

∑
T∈q(ℓ)+Sg

T≤0

aT ,ℓ(f )q
T eℓ, where qT = e2πi tr(Tτ).
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Higher codimension

Theorem (Kudla–Millson)∑
ℓ∈Dg

Λ

∑
T∈q(ℓ)+Sg

T≤0

[Z (T , ℓ)] · [−ω]g−rkTqT eℓ ∈ Mk
g ,Λ ⊗ H2g (FΛ,Q)

• As before, get a map

(H2g (FΛ,Q))∨ → Mk
g ,Λ

F 7→
∑
ℓ∈Dg

Λ

∑
T∈q(ℓ)+Sg

T≤0

F ([Z (T , ℓ)]) · [−ω]g−rkTqT eℓ.

• Dualizing we have

ψ :
(
Mk

g ,Λ

)∨
→ H2g (FΛ,Q)

c−T ,ℓ 7→ [Z (T , ℓ)]
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Main Goal

UPSHOT

There is a map of Q-vector spaces

ψ :
(
Mk

g ,Λ

)∨
→ H2g (FΛ,Q)

If Λ splits off U⊕2 and n ≥ 3 (the geometric setting), get an isomorphism

ψ :
(
Mk,◦

1,Λ

)∨ ∼=−→ PicQ (FΛ) .

MAIN GOAL: Exploit the above for geometric applications

Motivating questions

• Unirationality/uniruledness of FΛ?

• Special cycles on FΛ under “tautological maps”?

• Effective and extremal divisors on FΛ?

16 / 29



Main Goal

UPSHOT

There is a map of Q-vector spaces

ψ :
(
Mk

g ,Λ

)∨
→ H2g (FΛ,Q)

If Λ splits off U⊕2 and n ≥ 3 (the geometric setting), get an isomorphism

ψ :
(
Mk,◦

1,Λ

)∨ ∼=−→ PicQ (FΛ) .

MAIN GOAL: Exploit the above for geometric applications

Motivating questions

• Unirationality/uniruledness of FΛ?

• Special cycles on FΛ under “tautological maps”?

• Effective and extremal divisors on FΛ?

16 / 29



Main Goal

UPSHOT

There is a map of Q-vector spaces

ψ :
(
Mk

g ,Λ

)∨
→ H2g (FΛ,Q)

If Λ splits off U⊕2 and n ≥ 3 (the geometric setting), get an isomorphism

ψ :
(
Mk,◦

1,Λ

)∨ ∼=−→ PicQ (FΛ) .

MAIN GOAL: Exploit the above for geometric applications

Motivating questions

• Unirationality/uniruledness of FΛ?

• Special cycles on FΛ under “tautological maps”?

• Effective and extremal divisors on FΛ?

16 / 29



Main Goal

UPSHOT

There is a map of Q-vector spaces

ψ :
(
Mk

g ,Λ

)∨
→ H2g (FΛ,Q)

If Λ splits off U⊕2 and n ≥ 3 (the geometric setting), get an isomorphism

ψ :
(
Mk,◦

1,Λ

)∨ ∼=−→ PicQ (FΛ) .

MAIN GOAL: Exploit the above for geometric applications

Motivating questions

• Unirationality/uniruledness of FΛ?

• Special cycles on FΛ under “tautological maps”?

• Effective and extremal divisors on FΛ?

16 / 29



Main Goal

UPSHOT

There is a map of Q-vector spaces

ψ :
(
Mk

g ,Λ

)∨
→ H2g (FΛ,Q)

If Λ splits off U⊕2 and n ≥ 3 (the geometric setting), get an isomorphism

ψ :
(
Mk,◦

1,Λ

)∨ ∼=−→ PicQ (FΛ) .

MAIN GOAL: Exploit the above for geometric applications

Motivating questions

• Unirationality/uniruledness of FΛ?

• Special cycles on FΛ under “tautological maps”?

• Effective and extremal divisors on FΛ?
16 / 29



Uniruledness of FΛ

Let Λ be an even lattice of signature (2, n) with n ≥ 3 splitting off two copies of U.
For k = n+2

2

ψ :
(
Mk,◦

1,Λ

)∨ ∼=−→ PicQ (FΛ) .

In Mk,◦
1,Λ is the Eisenstein series

Ek,Λ(τ) =
∑

(A,ϕ)∈Γ̃∞\Mp2(Z)

ϕ(τ)2k · ρΛ(A, ϕ)−1e0 =
∑
m,ℓ

em,ℓq
meℓ.

Proposition (Barros–Beri–F.–Williams ’24)

The orthogonal modular variety FΛ is uniruled if

ne0,0 +
1

4
e1,0 < 0.

17 / 29
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Uniruledness of FΛ

Proposition (Barros–Beri–F.–Williams ’24)

The orthogonal modular variety FΛ is uniruled if ne0,0 +
1
4e1,0 < 0.

PROOF IDEA:
• Choose curve class C = λn−1 to not meet boundary of FBB

Λ (hence same for F tor
Λ ).

• The map
deg : PicQ (FΛ) → Q

H−m,ℓ 7→ H−m,ℓ · C

lies in (PicQ (FΛ))
∨ ∼= Mk,◦

1,Λ . Hence corresponds to∑
ℓ∈D(Λ)

∑
m∈q(ℓ)+Z

m≤0

(Hm,ℓ · C ) qmeℓ. (3)

• By work of Kudla this series (3) is equal to γEk,Λ(τ) for some γ > 0
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Uniruledness of FΛ

Proposition (Barros–Beri–F.–Williams ’24)

The orthogonal modular variety FΛ is uniruled if ne0,0 +
1
4e1,0 < 0.

PROOF IDEA:

• Hence each Hm,ℓ · C = γem,ℓ.

• If Y is a resolution of F tor
Λ we have

KY .C =

(
r∑

i=1

αm,µH−m,µ

)
.C ≤ γ

(
ne0,0 +

1

4
e1,0

)
.

• So if ne0,0 +
1
4e1,0 < 0, then KY .C < 0 and so Y and thus FΛ is uniruled.
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Uniruledness for some moduli of hyperkähler manifolds

Proposition (Barros–Beri–F.–Williams ’24)

The orthogonal modular variety FΛ is uniruled if ne0,0 +
1
4e1,0 < 0.

Corollary

The moduli space Mγ
OG6,2d is uniruled in the following cases

(i) when γ = 1 for d ≤ 12,

(ii) when γ = 2 for t ≤ 10 and t = 12 with d = 4t − 1,

(iii) when γ = 2 for t ≤ 9 and t = 11, 13 with d = 4t − 2.

The moduli spaces M1
Kumn,2

and M2
Kumn,2

are uniruled in the following cases:

(i) when γ = 1 for n ≤ 15 and n = 17, 20,

(ii) when γ = 2 for t ≤ 11 and t = 13, 15, 17, 19, where n = 4t − 2.
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Special cycles under pullback

Let L ⊂ Λ sublattice of signature (2, n′) with n′ ≤ n.

• Get induced map φ : FL → FΛ and so

φ∗ : H2g (FΛ,C) −→ H2g (FL,C).

Question

Describe pullback of special cycles?
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Special cycles under pullback

Let L ⊂ Λ sublattice of signature (2, n′) with n′ ≤ n. Let K = L⊥ and Ω = L⊕ K .

Theorem (Barros–F.–Zuffetti) (forthcoming ’25)

The following diagram commutes

(M
rkΛ/2
g ,Λ )∨ (M

rk L/2
g ,L )∨

H2(FΛ,C) H2(FL,C)

(ΘK )
∨◦ tr∨

Λ/Ω

ψΛ ψL

φ∗

(4)

In the above, trg ,Λ/Ω : Mk
g ,Ω −→ Mk

g ,Λ is the trace map and ΘK ,g (τ) is the vector-valued

genus g theta function in M
rkK/2
g ,K arising from K .
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Special cycles under pullback

Corollary (Barros–F.–Zuffetti) (forthcoming ’25)

For the codimension g special cycle Z (T , ℓ)Λ on FΛ, where ℓ ∈ D(Λ)g ,T ∈ q(ℓ) + Sg , we
have

φ∗([Z (T , ℓ)Λ]) = ∑
α∈(Λ/Ω)g

∑
t∈q((α+ℓ)L)+Sg

t≥0

θg (T − t, (α+ ℓ)K )[Z (t, (α+ ℓ)L)
L]∪ [−ω]g−rk t ,

where ℓ ∈ Λ∨/Ω is any fixed preimage of ℓ under Λ∨/Ω → Λ∨/Λ and θg (T , κ) the Fourier
coefficient of index (T , κ) of ΘK ,g .

POINT: We obtain an explicit description of the pullback of a special cycle.
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Cones of effective divisors on FΛ

Question

What is Eff(FΛ)?

EffNL (FΛ) = ⟨effective Q-linear combos of irr. comp. of Heegner divisors⟩

EffNL
R (FΛ) ⊂ Eff(FΛ)

• (Bruinier–Möller) EffNL (FΛ) is polyhedral.

Question

Is EffNL
R (FΛ) = Eff(FΛ)?
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• (Bruinier–Möller) EffNL (FΛ) is polyhedral.

Question

Is EffNL
R (FΛ) = Eff(FΛ)?

24 / 29



Cones of effective divisors on FΛ

Theorem (Barros–Beri–F.–Williams ’24)

For Λ splitting off U⊕2 and n ≥ 3, we give an explicit list of generators of EffNL (FΛ).

Example

In the K3 setting, where

Λ = U⊕2 ⊕ E8(−1)⊕2 ⊕ Zℓ, with ⟨ℓ, ℓ⟩ = −2d

FΛ = moduli space of quasi-polarized K3 surfaces of degree 2d

we write down EffNL (FΛ) for d ≤ 20 (e.g. EffNL (F2) = ⟨D0,0 − D1,1,D1,1⟩).

KEY INGREDIENT OF PROOF: ψ :
(
Mk,◦

1,Λ

)∨ ∼=−→ PicQ (FΛ) .

=⇒ translate to a problem about modular forms.
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Extremal divisors on FΛ

Given EffNL
R (FΛ) ⊂ Eff(FΛ) and we know generators of EffNL

R (FΛ)

Question

Are the generators of EffNL
R (FΛ) extremal in Eff(FΛ)?

Theorem (Barros–F.–Zuffetti)

Suppose Λ splits off U⊕2 and n ≥ 3. Let ρ ∈ Λ prim. s.t. ρ2 < 0, K = Zρ, L = K⊥. If

−
∑

α∈Λ/L⊕K
0<t<−m

et,αL
<

1

2

for E n+1
2
,L(τ) =

∑
m,ℓ em,ℓq

meℓ the weight rk L
2 Eisenstein series for L, then the irreducible

component PΛ
m,ρ∗ of HΛ

m,ρ∗ is extremal.
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Extremal divisors on FΛ

Theorem (Barros–F.–Zuffetti)

Suppose Λ splits off U⊕2 and n ≥ 3. Let ρ ∈ Λ prim. s.t. ρ2 < 0, K = Zρ, L = K⊥. If

−
∑

α∈Λ/L⊕K
0<t<−m

et,αL
<

1

2
,

then the irreducible component PΛ
m,ρ∗ of HΛ

m,ρ∗ is extremal.

PROOF IDEA:
• Find L ⊂ Λ such that φ : FL → FΛ has image Hm,ρ∗ .

• Find curve class C (not meeting boundary of FBB
Λ ) s.t. C covers PΛ

m,ρ∗ .

Enough to show C .HΛ
m,ρ∗ < 0 ( =⇒ C .PΛ

m,ρ∗ < 0)
• Use pullback formula for special cycles to compute φ∗H−m,ℓ and similar tricks as in
uniruledness proof to get φ∗C · φ∗H−m,ℓ < 0.

• Projection formula implies C .H−m,ℓ < 0.
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Extremal divisors on FΛ

Theorem (Barros–F.–Zuffetti)

Suppose Λ splits off U⊕2 and n ≥ 3. Let ρ ∈ Λ prim. s.t. ρ2 < 0, K = Zρ, L = K⊥. If
−
∑

α∈Λ/L⊕K
0<t<−m

et,αL
< 1

2 , then the irreducible component PΛ
m,ρ∗ of HΛ

m,ρ∗ is extremal.

Example

In the K3 setting, for low degrees d ≤ 7, this shows that all generators of EffNL
R (FΛ)

except the nodal Noether–Lefschetz divisor D0,0 are extremal in Eff(FΛ).
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