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Orthogonal modular varieties

® A\ = even lattice of signature (2, n)
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Orthogonal modular varieties: examples

® A\ = even lattice of signature (2, n)

Orthogonal modular variety

Fr=Dp/OF (A)

K3 surfaces
A= U0 E(-1)? @ Z¢, with (£,¢) = —2d
Fa = moduli space of quasi-polarized K3 surfaces (S, H) of degree 2d
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Orthogonal modular varieties: examples

® A = even lattice of signature (2, n)

Orthogonal modular variety

Fr=Dp/OF (A)

K3 surfaces
A= U0 E(-1)? @ Z¢, with (£,¢) = —2d
Fa = moduli space of quasi-polarized K3 surfaces (S, H) of degree 2d

Hyperkahler manifolds
For various choices of A

Fa = (finite cover of) partial compactification of moduli of HK manifolds
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Noether—Lefschetz divisors/Heegner divisors on F)

In K3 setting: Noether—Lefschetz divisors

Dpa={(S,H) | 38 € Picg (Fa) st. B2 =2h—2,8.H=a}.

Examples
® Do = nodal locus
(there is a (—2)-curve B s.t. f.H =0)

® D; 1=unigonal locus
(there is a curve 3 with 42 =0 and B.H = 1)
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Noether—Lefschetz divisors/Heegner divisors on F)

In K3 setting: Noether—Lefschetz divisors
Dpa={(S,H) |38 € Pic(S) s.t. B2 =2h—2,8.H = a}.

In general setting: Heegner divisors
For fixed v € AV C Ag
D, =viNnDp={[Z] € Dr|(Z,v) =0}.
Let £+ A€ D(A)=AY/Aand m € @ + Z non-positive, then get O (A)-invariant cycle

> b, (1)

vEL+N
(vév) -m

— descends to a Q-Cartier divisor Hy, ; on Fp = D/\/(N)Jr (A) called a Heegner divisor.
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Heegner divisors generate Picg (Fa)

Theorem (Bergeron—Li-Millson—Moeglin)

Let A be an even lattice of signature (2, n) with n > 3 splitting off two copies of the
hyperbolic plane. Then
Picg (Fa) = (Heegner divisors).

In particular, in the K3 setting this says

Picg (Fa) = (Noether—Lefschetz divisors).
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Relationship to modular forms

® The metaplectic group Mp,(Z) is a double cover of SLy(Z) of pairs (A, ¢(7)) where
A € SLy(Z), ¢(7) a choice of a square root cT + d on H.
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Relationship to modular forms

® The metaplectic group Mp,(Z) is a double cover of SLy(Z) of pairs (A, ¢(7)) where
A € SLy(Z), ¢(7) a choice of a square root cT + d on H.
® The Weil representation of Mp,(Z) attached to A is a canonical representation

pn : Mpy(Z) — GL(C[D(N)]).

Vector-valued modular forms

A holomorphic function

f : H — C[D(N)]

is a vector-valued (elliptic) modular form of weight k and type pp if for all
g=(A¢) €Mp,(Z)and T € H

F(AT) = ¢(7)* pa(g) - £(7)

and f is holomorphic at the cusp at co.
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Relationship to modular forms

Vector-valued modular forms

A holomorphic function

f:H— C[D(N)]
is a vector-valued (elliptic) modular form of weight k and type pp if for all
g = (A, ¢) € Mp,(Z) and 7 € H we have f(AT) = ¢(7)*pa(g) - f(7) and f is
holomorphic at the cusp at cc.
° M,’{ = Q-vector space of vector-valued modular forms of weight k and type pa
® Elements f € M have Fourier expansions

f= Z Z am,fqme&

LeD(N) meq(£)+Z
m>0

where ap, o € Q, ¢ = exp(2mim7), 7 € H, and ¢, standard generators of C[D(A)].
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Relationship to modular forms

° M/’{ = Q-vector space of vector-valued modular forms of weight k and type pp
Theorem (Kudla—Millson)
S ) [HmdaTe € My @ H(Fa, Q)

LeD(N) meq(€)+Z
m>0

The [Hy, ¢] are cohomology classes of Heegner divisors.
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Relationship to modular forms

° M/’( = Q-vector space of vector-valued modular forms of weight k and type pp
Theorem (Kudla—Millson)
S ) [HmdaTe € My @ H(Fa, Q)

LeD(N) meq(€)+Z
m>0

The [Hy, ¢] are cohomology classes of Heegner divisors.
® Equivalently, for every functional F € (H2(Fa,Q))Y, the series

Y. > F(lHnd)g™e

LeD(N) meq(£)+Z
m<0

converges and is a modular form in M,’{.

10/29



Relationship to modular forms

° M/’( = Q-vector space of vector-valued modular forms of weight k and type pa

e Kudla—Millson implies there is a map
(H(Fr. Q)" — M

Fior > > F([Hme)g e

LeD(N) meq(€)+2Z
m<0
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Relationship to modular forms

° M/’( = Q-vector space of vector-valued modular forms of weight k and type pa

e Kudla—Millson implies there is a map
(H(Fr. Q)" — M

Fior > > F([Hme)g e

LeD(N) meq(€)+2Z
m<0

® Dualizing yields
v
v (MF) — H(Fa Q)

Cm¢ — [H—m,é]
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Relationship to modular forms

UPSHOT: There is a map of Q-vector spaces

" (I\/l,’()v s H(Fr, Q)

Cmy — [Hfm,f]
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Relationship to modular forms

UPSHOT: There is a map of Q-vector spaces

" (I\/l,’()v s H(Fr, Q)

Cmy — [Hfm,f]

The Bergeron—Li—Millson—Moeglin result that (for A splitting 2 copies of U)

Picg (Fa) = (Hm,)

v
in fact is showing that : (MK’()) — H?(Fa, Q) is an isomorphism, where k = %2
(Injectivity already shown by Bruinier).
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Higher codimension: special cycles

® S, = symmetric half-integral g x g-matrices (diagonal entries integer).

® For v=(w,...,vg) € (AV)&, denote by v the set of points in Dp which are
orthogonal to every entry of v.

® The moment matrix q(v) of v is q(v) = %((va, vb>)
then g(v) € S,.

_ . Note that if v € A8,
a,b=1,....g

Special Cycles
Let £ € (D(L))8 and let T € q(f) + Sg. The formal sum

>, v

vel+NE
q(v)=T

is a locally finite O (A)-invariant cycle in Dh.

= Descends to a codimension g special cycle Z(T,¥) on Fp.
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Higher codimension: modular forms

® Hg = Siegel upper half-space of genus g, Sp,.(RR) acts on Hj
® ppg =Weil rep. of the metaplectic cover Mp,,(Z) of Sp,y,(Z) acting on C[D(A)#]

Definition: Higher genus modular forms

A vector-valued (Siegel) modular form of weight k and genus g with respect to the Weil
representation pp . is a holomorphic function f: H, — C[D(A)#] such that

F(y-7) = o(1)*pag(7)f(r)  forall v = (M, ¢) € Mpy,(Z).

If g =1, then we also require that f is holomorphic at co.

14/29



Higher codimension: modular forms

® Hg = Siegel upper half-space of genus g, Sp,.(RR) acts on Hj
® ppg =Weil rep. of the metaplectic cover Mp,,(Z) of Sp,y,(Z) acting on C[D(A)#]

Definition: Higher genus modular forms

A vector-valued (Siegel) modular form of weight k and genus g with respect to the Weil
representation pp . is a holomorphic function f: H, — C[D(A)#] such that

F(y-7) = o(1)*pag(7)f(r)  forall v = (M, ¢) € Mpy,(Z).

If g =1, then we also require that f is holomorphic at co.

° Mg,\ = Q-vector space of such modular forms.

14/29



Higher codimension: modular forms

® Hg = Siegel upper half-space of genus g, Sp,.(RR) acts on Hj
® ppg =Weil rep. of the metaplectic cover Mp,,(Z) of Sp,y,(Z) acting on C[D(A)#]

Definition: Higher genus modular forms

A vector-valued (Siegel) modular form of weight k and genus g with respect to the Weil
representation pp . is a holomorphic function f: H, — C[D(A)#] such that

F(y-7) = o(1)*pag(7)f(r)  forall v = (M, ¢) € Mpy,(Z).

If g =1, then we also require that f is holomorphic at co.

° Mg,\ = Q-vector space of such modular forms.

® Every f € I\/Iéf,\ admits a Fourier expansion of the form

f(r) = Z Z ato(F)g"es, where g7 = 2™tr(77),
€D Teq(0)+Se
7<0
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Higher codimension

Theorem (Kudla—Millson)

o> (AT, [~wEE T qT e € ME ) @ H?(FA,Q)
LeDF T€q(0)+Sg
T<0

® As before, get a map
(H?8(Fa, Q)Y = Mf4
Fo > >0 FUZ(T.ON [l Tq e

LeDE Teq(€)+S,
T<0
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Higher codimension

Theorem (Kudla—Millson)

o> (AT, [~wEE T qT e € ME ) @ H?(FA,Q)
LeDF T€q(0)+Sg
T<0

® As before, get a map
(H?8(Fa, Q)Y = Mf4
Fo > >0 FUZ(T.ON [l Tq e

LeDE Teq(€)+S,
T<0

® Dualizing we have
. k v 2g
v (Mip) — H2(Fr,Q)
cre = [Z(T,0)]

15/29



Main Goal

UPSHOT

There is a map of (Q-vector spaces

K\ 2
v (MEr) = HE(Fr,Q)
If A splits off U®2 and n > 3 (the geometric setting), get an isomorphism

==

b (Mf,‘{)v =, Picg (Fr).
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Main Goal

UPSHOT

There is a map of (Q-vector spaces

K\ 2
v: (MEn) = HE(Fr Q)
If A splits off U®2 and n > 3 (the geometric setting), get an isomorphism
Vo
b (Mlk,\> =, Picg (Fr).

MAIN GOAL: Exploit the above for geometric applications

Motivating questions
e Unirationality/uniruledness of Fp?
® Special cycles on Fp under “tautological maps”?

e Effective and extremal divisors on Fp? .



Uniruledness of F)

Let A be an even lattice of signature (2, n) with n > 3 splitting off two copies of U.

For k = —"‘52

b (Mf”,‘\’)v 2, Picg (Fr).
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Uniruledness of F)

Let A be an even lattice of signature (2, n) with n > 3 splitting off two copies of U.
For k = %2
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Uniruledness of F)

Let A be an even lattice of signature (2, n) with n > 3 splitting off two copies of U.
For k = 142

2
Vo~
i (M%) = Picg (Fa).
In M{(X is the Eisenstein series

Exa(m) = Z O(1)%* - pa(A, 8) teg = Z emeqep.
mJl

(A$)€T o \Mp,(Z)

Proposition (Barros—Beri—F.—Williams '24)
The orthogonal modular variety Fp is uniruled if

1
nepo + 16170 < 0.
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Uniruledness of F)
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The orthogonal modular variety Fj is uniruled if negg + %6170 < 0.

PROOF IDEA:
® Choose curve class C = A"! to not meet boundary of 728 (hence same for Fi°").
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Uniruledness of F)

Proposition (Barros—Beri—F.—Williams '24)
The orthogonal modular variety Fj is uniruled if negg + %6170 < 0.

PROOF IDEA:
® Choose curve class C = A"! to not meet boundary of 728 (hence same for Fi°").

® The map
deg: Picg (Fa) = Q

H—m,Z = H—m,Z -C

lies in (Picg (Fa))" = I\/lf’o. Hence corresponds to

Y > (Hme-C)qer (3)

LeD(N) meq(£)+Z
m<0

® By work of Kudla this series (3) is equal to vE, A(7) for some v > 0
18/29



Uniruledness of F)

Proposition (Barros—Beri—F.—Williams '24)

The orthogonal modular variety Fy is uniruled if negg + %el,o < 0.

PROOF IDEA:
® Hence each Hp, - C = yepmy.
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Uniruledness of F)

Proposition (Barros—Beri—F.—Williams '24)

The orthogonal modular variety Fy is uniruled if negg + %el,o < 0.

PROOF IDEA:
® Hence each Hp, - C = yepmy.

® If Y is a resolution of F}* we have

r
1
Ky.C = (Z O‘m,MH—muu) .C< ¥ (ne(),o + 461,0) .
i=1
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Uniruledness of F)

Proposition (Barros—Beri—F.—Williams '24)

The orthogonal modular variety Fy is uniruled if negg + %el,o < 0.

PROOF IDEA:
® Hence each Hp, - C = yepmy.

® If Y is a resolution of F}* we have
: 1
Ky.C = (2} Oém“u,H—m“u> .C <~ (neo,o =+ 461’0) .
=

® So if neyo + %el,o < 0, then Ky.C < 0 and so Y and thus Fp is uniruled.
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Uniruledness for some moduli of hyperkahler manifolds

Proposition (Barros—Beri—F.—Williams '24)

The orthogonal modular variety Fj is uniruled if ney o + %el,o < 0.

Corollary
The moduli space M%GG,Zd is uniruled in the following cases
(i) when vy =1 for d < 12,
(i) when v =2 for t <10 and t = 12 with d = 4t — 1,
(iii) when y =2 for t <9 and t = 11,13 with d = 4t — 2.
The moduli spaces M%(umn,2 and M%(um,,,Z are uniruled in the following cases:
(i) when v =1 for n <15 and n = 17,20,
(ii) when v =2 for t <11 and t = 13,15,17,19, where n = 4t — 2.

20/29



Special cycles under pullback

Let L C A sublattice of signature (2, n") with n’ < n.
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Special cycles under pullback

Let L C A sublattice of signature (2, n") with n’ < n.
® Get induced map ¢: F; — Fa and so

©*: H%(Fp,C) — H*(F.,C).

Question
Describe pullback of special cycles?
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Special cycles under pullback

Let L C A sublattice of signature (2,n') with n’ < n. Let K =L+ and Q= LD K.

Theorem (Barros—F.—Zuffetti) (forthcoming '25)

The following diagram commutes

(©k)VotrY
Ttk A/2 A/Q rk L/2
(Ma/2)Y ——"5 (M%)
lwA le (4)

H2(Fp,C) — & H2(F,,C)

In the above, trg A/q: Mé‘Q — Mg/\ is the trace map and Ok g(7) is the vector-valued

genus g theta function in M;k;/z arising from K.
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Special cycles under pullback

Corollary (Barros—F.—Zuffetti) (forthcoming '25)

For the codimension g special cycle Z(T,¢)" on Fa, where £ € D(N)8, T € q(€) + Sg, we
have

e (Z(T. D)= > Yo (Tt (a+0K)Z(t (a+ O TU[-w]E™,

ac(N/Q)8 teq((at£)L)+Sg
>0

where ¢ € AV /Q is any fixed preimage of £ under AY/Q — AV/A and 0,(T, x) the Fourier
coefficient of index (T, ) of Ok .
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Special cycles under pullback

Corollary (Barros—F.—Zuffetti) (forthcoming '25)

For the codimension g special cycle Z(T,¢)" on Fa, where £ € D(N)8, T € q(€) + Sg, we
have

e (Z(T. D)= > Yo (Tt (a+0K)Z(t (a+ O TU[-w]E™,

a€(A/Q)8 teq((at£))+Sg
>0

where ¢ € AV /Q is any fixed preimage of £ under AY/Q — AV/A and 0,(T, x) the Fourier
coefficient of index (T, ) of Ok .

POINT: We obtain an explicit description of the pullback of a special cycle.
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Cones of effective divisors on F)

What is Eff(F7)?
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Cones of effective divisors on F)

Question
What is Eff(F7)?

EffNE (Fp) = (effective Q-linear combos of irr. comp. of Heegner divisors)
Effg" (Fa) C Eff(Fa)

e (Bruinier-Moller) EffME (Fy) is polyhedral.

Question
Is EffRL (Fo) = Eff(Fa)?
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Cones of effective divisors on F,

Theorem (Barros—Beri—F.—Williams '24)

For A splitting off U®2 and n > 3, we give an explicit list of generators of EffVE (Fp).
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Cones of effective divisors on F)

Theorem (Barros—Beri—F.—Williams '24)

For A splitting off U®2 and n > 3, we give an explicit list of generators of EffVE (Fp).

Example

In the K3 setting, where

A= U g E(-1)®? @ Z¢, with (£,¢) = —2d

Fa = moduli space of quasi-polarized K3 surfaces of degree 2d
we write down EffNE (Fp) for d < 20 (e.g. BV (F) = (Doo — D11, D11)).

Voo
KEY INGREDIENT OF PROOF: 4:: (M{) = Picg (%)
— translate to a problem about modular forms.
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Extremal divisors on F)

Given EfffL (Fp) c Eff(Fa) and we know generators of EffA (Fy)
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Extremal divisors on F)

Given EfffL (Fp) c Eff(Fa) and we know generators of EffA (Fy)

|

Question
Are the generators of Effft (Fp) extremal in Eff(Fp)?
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Extremal divisors on F)

Given EfffL (Fp) c Eff(Fa) and we know generators of EffA (Fy)

Question
Are the generators of Effft (Fp) extremal in Eff(Fp)?

Theorem (Barros—F.-Zuffetti)
Suppose A splits off U2 and n > 3. Let p € A prim. s.t. p?> <0, K =Zp, L = K+ If

— Z etaL < %

aeN/LBK
0<t<—m

for E%lyL(T) = me€meqTes the weight kL Eisenstein series for L, then the irreducible

A A
component Py, of Hpy,  is extremal.
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Theorem (Barros—F.—Zuffetti)
Suppose A splits off U2 and n > 3. Let p € A prim. s.t. p> <0, K =7Zp, L= KL, If

1
- Z et,OcL < 57
aeN/LeK
0<t<—m

then the irreducible component P,’,\,,p* of H,’,\Lp* is extremal.

PROOF IDEA:
® Find L C A such that p: F; — Fp has image Hp, .
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Suppose A splits off U2 and n > 3. Let p € A prim. s.t. p> <0, K =7Zp, L= KL, If
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then the irreducible component P,’,\,,p* of H,’,\Lp* is extremal.

PROOF IDEA:
® Find L C A such that p: F; — Fp has image Hp, .
® Find curve class C (not meeting boundary of F58) s.t. C covers P,’,\,,p*.

Enough to show C.H}, , <0 (= C.P; , <0)
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Theorem (Barros—F.—Zuffetti)
Suppose A splits off U2 and n > 3. Let p € A prim. s.t. p> <0, K =7Zp, L= KL, If

1
- Z et,OcL < 57
aeN/LeK
0<t<—m

then the irreducible component P,’,\,,p* of Hrlv\up* is extremal.

PROOF IDEA:
® Find L C A such that p: F; — Fp has image Hp, .
® Find curve class C (not meeting boundary of F58) s.t. C covers P,’,\,,p*.
Enough to show C.H}, , <0 (= C.P; , <0)
® Use pullback formula for special cycles to compute ¢*H_,, , and similar tricks as in
uniruledness proof to get 0*C - p*H_p,, < 0.
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Theorem (Barros—F.—Zuffetti)
Suppose A splits off U2 and n > 3. Let p € A prim. s.t. p> <0, K =7Zp, L= KL, If

1
- Z et,OcL < 57
aeN/LeK
0<t<—m

then the irreducible component P,’,\,,p* of Hrlv\up* is extremal.

PROOF IDEA:
® Find L C A such that p: F; — Fp has image Hp, .
® Find curve class C (not meeting boundary of F58) s.t. C covers P,’,\,,p*.
Enough to show C.H}, , <0 (= C.P; , <0)
Use pullback formula for special cycles to compute ¢*H_, ; and similar tricks as in
uniruledness proof to get 0*C - p*H_p,, < 0.
Projection formula implies C.H_p, o, < 0.

27 /29



Extremal divisors on F)

Theorem (Barros—F.—Zuffetti)

Suppose A splits off U2 and n > 3. Let p € A prim. s.t. p?> <0, K =7Zp, L = K+ If

— ZQGA/L@K €t a < %, then the irreducible component 'Dr/;,p* of H,/,\,,p* is extremal.
0<t<—m
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Theorem (Barros—F.—Zuffetti)

Suppose A splits off U2 and n > 3. Let p € A prim. s.t. p?> <0, K =7Zp, L = K+ If

= ZQGA/L@K €t a; < %, then the irreducible component Prlr\v,p* of H,/,\,’p* is extremal.
0<t<—m

Example

In the K3 setting, for low degrees d < 7, this shows that all generators of Eff¥ ()
except the nodal Noether—Lefschetz divisor Dy o are extremal in Eff(Fp).
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Theorem (Barros—F.—Zuffetti)

Suppose A splits off U2 and n > 3. Let p € A prim. s.t. p?> <0, K =7Zp, L = K+ If
= Z%G/E/LEBK €t a; < %, then the irreducible component P,’,\,,p* of H,’,\,’p* is extremal.
<t<—m

Example

In the K3 setting, for low degrees d < 7, this shows that all generators of Eff¥ ()
except the nodal Noether—Lefschetz divisor Dy o are extremal in Eff(Fp).

Corollary (Barros—F.—Zuffetti)

The orthogonal modular variety Fa with A = U2 @ A;(—1) @ A;(—3) partially
compactifying the moduli space M:Il(um2,2 satisfies

Eff§"(Fa) = Eff(Fa).
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