

Special cycles and cones of divisors on orthogonal modular varieties

Laure Flapan

Department of Mathematics
Michigan State University

January 18, 2025

Overview

1. Special cycles on orthogonal modular varieties
2. Uniruledness
3. Special cycles under “tautological maps”
4. Cones of divisors

Orthogonal modular varieties

- Λ = even lattice of signature $(2, n)$

Orthogonal modular varieties

- Λ = even lattice of signature $(2, n)$
- \mathcal{D}_Λ = one of two connected components of

$$\{[Z] \in \mathbb{P}(V_{\mathbb{C}}) \mid \langle Z, Z \rangle = 0, \langle Z, \overline{Z} \rangle > 0 \}.$$

This is a Hermitian symmetric domain of Type IV.

Orthogonal modular varieties

- Λ = even lattice of signature $(2, n)$
- \mathcal{D}_Λ = one of two connected components of

$$\{[Z] \in \mathbb{P}(V_{\mathbb{C}}) \mid \langle Z, Z \rangle = 0, \langle Z, \overline{Z} \rangle > 0 \}.$$

This is a Hermitian symmetric domain of Type IV.

- $O^+(\Lambda)$ = automorphisms of Λ that fix \mathcal{D}_Λ .

Orthogonal modular varieties

- Λ = even lattice of signature $(2, n)$
- \mathcal{D}_Λ = one of two connected components of

$$\{[Z] \in \mathbb{P}(V_{\mathbb{C}}) \mid \langle Z, Z \rangle = 0, \langle Z, \bar{Z} \rangle > 0 \}.$$

This is a Hermitian symmetric domain of Type IV.

- $O^+(\Lambda)$ = automorphisms of Λ that fix \mathcal{D}_Λ .
- $\tilde{O}^+(\Lambda) \subset O^+(\Lambda)$ subgroup of automorphisms with trivial action on $D(\Lambda) = \Lambda^\vee/\Lambda$.

Orthogonal modular varieties

- Λ = even lattice of signature $(2, n)$
- \mathcal{D}_Λ = one of two connected components of

$$\{[Z] \in \mathbb{P}(V_{\mathbb{C}}) \mid \langle Z, Z \rangle = 0, \langle Z, \overline{Z} \rangle > 0\}.$$

This is a Hermitian symmetric domain of Type IV.

- $O^+(\Lambda)$ = automorphisms of Λ that fix \mathcal{D}_Λ .
- $\widetilde{O}^+(\Lambda) \subset O^+(\Lambda)$ subgroup of automorphisms with trivial action on $D(\Lambda) = \Lambda^\vee/\Lambda$.

Orthogonal modular variety

$$\mathcal{F}_\Lambda = \mathcal{D}_\Lambda / \widetilde{O}^+(\Lambda)$$

Orthogonal modular varieties: examples

- Λ = even lattice of signature $(2, n)$

Orthogonal modular variety

$$\mathcal{F}_\Lambda = \mathcal{D}_\Lambda / \widetilde{\mathrm{O}}^+(\Lambda)$$

K3 surfaces

$$\Lambda = U^{\oplus 2} \oplus E_8(-1)^{\oplus 2} \oplus \mathbb{Z}\ell, \text{ with } \langle \ell, \ell \rangle = -2d$$

\mathcal{F}_Λ = moduli space of quasi-polarized K3 surfaces (S, H) of degree $2d$

Orthogonal modular varieties: examples

- Λ = even lattice of signature $(2, n)$

Orthogonal modular variety

$$\mathcal{F}_\Lambda = \mathcal{D}_\Lambda / \widetilde{O}^+(\Lambda)$$

K3 surfaces

$$\Lambda = U^{\oplus 2} \oplus E_8(-1)^{\oplus 2} \oplus \mathbb{Z}\ell, \text{ with } \langle \ell, \ell \rangle = -2d$$

\mathcal{F}_Λ = moduli space of quasi-polarized K3 surfaces (S, H) of degree $2d$

Hyperkähler manifolds

For various choices of Λ

\mathcal{F}_Λ = (finite cover of) partial compactification of moduli of HK manifolds

Noether–Lefschetz divisors/Heegner divisors on \mathcal{F}_Λ

In K3 setting: Noether–Lefschetz divisors

$$D_{h,a} = \{(S, H) \mid \exists \beta \in \text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda) \text{ s.t. } \beta^2 = 2h - 2, \beta \cdot H = a\}.$$

Examples

- $D_{0,0}$ = nodal locus
(there is a (-2) -curve β s.t. $\beta \cdot H = 0$)
- $D_{1,1}$ = unigonal locus
(there is a curve β with $\beta^2 = 0$ and $\beta \cdot H = 1$)

Noether–Lefschetz divisors/Heegner divisors on \mathcal{F}_Λ

In K3 setting: Noether–Lefschetz divisors

$$D_{h,a} = \{(S, H) \mid \exists \beta \in \text{Pic}(S) \text{ s.t. } \beta^2 = 2h - 2, \beta \cdot H = a\}.$$

In general setting: Heegner divisors

Noether–Lefschetz divisors/Heegner divisors on \mathcal{F}_Λ

In K3 setting: Noether–Lefschetz divisors

$$D_{h,a} = \{(S, H) \mid \exists \beta \in \text{Pic}(S) \text{ s.t. } \beta^2 = 2h - 2, \beta \cdot H = a\}.$$

In general setting: Heegner divisors

For fixed $v \in \Lambda^\vee \subset \Lambda_{\mathbb{Q}}$

$$D_v = v^\perp \cap \mathcal{D}_\Lambda = \{[Z] \in \mathcal{D}_\Lambda \mid \langle Z, v \rangle = 0\}.$$

Noether–Lefschetz divisors/Heegner divisors on \mathcal{F}_Λ

In K3 setting: Noether–Lefschetz divisors

$$D_{h,a} = \{(S, H) \mid \exists \beta \in \text{Pic}(S) \text{ s.t. } \beta^2 = 2h - 2, \beta \cdot H = a\}.$$

In general setting: Heegner divisors

For fixed $v \in \Lambda^\vee \subset \Lambda_{\mathbb{Q}}$

$$D_v = v^\perp \cap \mathcal{D}_\Lambda = \{[Z] \in \mathcal{D}_\Lambda \mid \langle Z, v \rangle = 0\}.$$

Let $\ell + \Lambda \in D(\Lambda) = \Lambda^\vee / \Lambda$ and $m \in \frac{\langle \ell, \ell \rangle}{2} + \mathbb{Z}$ non-positive, then get $\widetilde{O}^+(\Lambda)$ -invariant cycle

$$\sum_{\substack{v \in \ell + \Lambda \\ \frac{\langle v, v \rangle}{2} = m}} D_v \tag{1}$$

\implies descends to a \mathbb{Q} -Cartier divisor $H_{m,\ell}$ on $\mathcal{F}_\Lambda = \mathcal{D}_\Lambda / \widetilde{O}^+(\Lambda)$ called a Heegner divisor.

Heegner divisors generate $\text{Pic}_{\mathbb{Q}}(\mathcal{F}_{\Lambda})$

Theorem (Bergeron–Li–Millson–Moeglin)

Let Λ be an even lattice of signature $(2, n)$ with $n \geq 3$ splitting off two copies of the hyperbolic plane. Then

$$\text{Pic}_{\mathbb{Q}}(\mathcal{F}_{\Lambda}) = \langle \text{Heegner divisors} \rangle.$$

In particular, in the K3 setting this says

$$\text{Pic}_{\mathbb{Q}}(\mathcal{F}_{\Lambda}) = \langle \text{Noether–Lefschetz divisors} \rangle.$$

Relationship to modular forms

- The *metaplectic group* $\mathrm{Mp}_2(\mathbb{Z})$ is a double cover of $\mathrm{SL}_2(\mathbb{Z})$ of pairs $(A, \phi(\tau))$ where $A \in \mathrm{SL}_2(\mathbb{Z})$, $\phi(\tau)$ a choice of a square root $c\tau + d$ on \mathbb{H} .

Relationship to modular forms

- The *metaplectic group* $\mathrm{Mp}_2(\mathbb{Z})$ is a **double cover of $\mathrm{SL}_2(\mathbb{Z})$** of pairs $(A, \phi(\tau))$ where $A \in \mathrm{SL}_2(\mathbb{Z})$, $\phi(\tau)$ a choice of a square root $c\tau + d$ on \mathbb{H} .
- The *Weil representation* of $\mathrm{Mp}_2(\mathbb{Z})$ attached to Λ is a **canonical representation**

$$\rho_\Lambda : \mathrm{Mp}_2(\mathbb{Z}) \longrightarrow \mathrm{GL}(\mathbb{C}[D(\Lambda)]).$$

Relationship to modular forms

- The *metaplectic group* $\mathrm{Mp}_2(\mathbb{Z})$ is a [double cover of \$\mathrm{SL}_2\(\mathbb{Z}\)\$](#) of pairs $(A, \phi(\tau))$ where $A \in \mathrm{SL}_2(\mathbb{Z})$, $\phi(\tau)$ a choice of a square root $c\tau + d$ on \mathbb{H} .
- The *Weil representation* of $\mathrm{Mp}_2(\mathbb{Z})$ attached to Λ is a [canonical representation](#)

$$\rho_\Lambda : \mathrm{Mp}_2(\mathbb{Z}) \longrightarrow \mathrm{GL}(\mathbb{C}[D(\Lambda)]).$$

Vector-valued modular forms

A holomorphic function

$$f : \mathbb{H} \longrightarrow \mathbb{C}[D(\Lambda)]$$

is a [vector-valued \(elliptic\) modular form](#) of weight k and type ρ_Λ if for all $g = (A, \phi) \in \mathrm{Mp}_2(\mathbb{Z})$ and $\tau \in \mathbb{H}$

$$f(A\tau) = \phi(\tau)^{2k} \rho_\Lambda(g) \cdot f(\tau)$$

and f is holomorphic at the cusp at ∞ .

Relationship to modular forms

Vector-valued modular forms

A holomorphic function

$$f : \mathbb{H} \longrightarrow \mathbb{C}[D(\Lambda)]$$

is a **vector-valued (elliptic) modular form** of weight k and type ρ_Λ if for all $g = (A, \phi) \in \mathrm{Mp}_2(\mathbb{Z})$ and $\tau \in \mathbb{H}$ we have $f(A\tau) = \phi(\tau)^{2k} \rho_\Lambda(g) \cdot f(\tau)$ and f is holomorphic at the cusp at ∞ .

Relationship to modular forms

Vector-valued modular forms

A holomorphic function

$$f : \mathbb{H} \longrightarrow \mathbb{C}[D(\Lambda)]$$

is a **vector-valued (elliptic) modular form** of weight k and type ρ_Λ if for all $g = (A, \phi) \in \mathrm{Mp}_2(\mathbb{Z})$ and $\tau \in \mathbb{H}$ we have $f(A\tau) = \phi(\tau)^{2k} \rho_\Lambda(g) \cdot f(\tau)$ and f is holomorphic at the cusp at ∞ .

- $M_\Lambda^k = \mathbb{Q}$ -vector space of vector-valued modular forms of weight k and type ρ_Λ

Relationship to modular forms

Vector-valued modular forms

A holomorphic function

$$f : \mathbb{H} \longrightarrow \mathbb{C}[D(\Lambda)]$$

is a **vector-valued (elliptic) modular form** of weight k and type ρ_Λ if for all $g = (A, \phi) \in \mathrm{Mp}_2(\mathbb{Z})$ and $\tau \in \mathbb{H}$ we have $f(A\tau) = \phi(\tau)^{2k} \rho_\Lambda(g) \cdot f(\tau)$ and f is holomorphic at the cusp at ∞ .

- $M_\Lambda^k = \mathbb{Q}$ -vector space of vector-valued modular forms of weight k and type ρ_Λ
- Elements $f \in M_\Lambda^k$ have Fourier expansions

$$f = \sum_{\ell \in D(\Lambda)} \sum_{\substack{m \in q(\ell) + \mathbb{Z} \\ m \geq 0}} a_{m,\ell} q^m \mathfrak{e}_\ell,$$

where $a_{m,\ell} \in \mathbb{Q}$, $q^m = \exp(2\pi i m\tau)$, $\tau \in \mathbb{H}$, and \mathfrak{e}_ℓ standard generators of $\mathbb{C}[D(\Lambda)]$.

Relationship to modular forms

- $M_{\Lambda}^k = \mathbb{Q}$ -vector space of vector-valued modular forms of weight k and type ρ_{Λ}

Theorem (Kudla–Millson)

$$\sum_{\ell \in D(\Lambda)} \sum_{\substack{m \in q(\ell) + \mathbb{Z} \\ m \geq 0}} [H_{m,\ell}] q^m \mathfrak{e}_{\ell} \in M_{\Lambda}^k \otimes H^2(\mathcal{F}_{\Lambda}, \mathbb{Q}) \quad (2)$$

The $[H_{m,\ell}]$ are cohomology classes of Heegner divisors.

Relationship to modular forms

- $M_{\Lambda}^k = \mathbb{Q}$ -vector space of vector-valued modular forms of weight k and type ρ_{Λ}

Theorem (Kudla–Millson)

$$\sum_{\ell \in D(\Lambda)} \sum_{\substack{m \in q(\ell) + \mathbb{Z} \\ m \geq 0}} [H_{m,\ell}] q^m \mathfrak{e}_{\ell} \in M_{\Lambda}^k \otimes H^2(\mathcal{F}_{\Lambda}, \mathbb{Q}) \quad (2)$$

The $[H_{m,\ell}]$ are cohomology classes of Heegner divisors.

- Equivalently, for every functional $F \in (H^2(\mathcal{F}_{\Lambda}, \mathbb{Q}))^{\vee}$, the series

$$\sum_{\ell \in D(\Lambda)} \sum_{\substack{m \in q(\ell) + \mathbb{Z} \\ m \leq 0}} F([H_{m,\ell}]) q^m \mathfrak{e}_{\ell}$$

converges and is a modular form in M_{Λ}^k .

Relationship to modular forms

- $M_{\Lambda}^k = \mathbb{Q}$ -vector space of vector-valued modular forms of weight k and type ρ_{Λ}
- Kudla–Millson implies there is a map

$$(H^2(\mathcal{F}_{\Lambda}, \mathbb{Q}))^{\vee} \rightarrow M_{\Lambda}^k$$
$$F \mapsto \sum_{\ell \in D(\Lambda)} \sum_{\substack{m \in q(\ell) + \mathbb{Z} \\ m \leq 0}} F([H_{m,\ell}]) q^m \mathfrak{e}_{\ell}.$$

Relationship to modular forms

- $M_\Lambda^k = \mathbb{Q}$ -vector space of vector-valued modular forms of weight k and type ρ_Λ
- Kudla–Millson implies there is a map

$$(H^2(\mathcal{F}_\Lambda, \mathbb{Q}))^\vee \rightarrow M_\Lambda^k$$
$$F \mapsto \sum_{\ell \in D(\Lambda)} \sum_{\substack{m \in q(\ell) + \mathbb{Z} \\ m \leq 0}} F([H_{m,\ell}]) q^m \mathfrak{e}_\ell.$$

- Dualizing yields

$$\psi: \left(M_\Lambda^k\right)^\vee \rightarrow H^2(\mathcal{F}_\Lambda, \mathbb{Q})$$
$$c_{m,\ell} \mapsto [H_{-m,\ell}]$$

Relationship to modular forms

UPSHOT: There is a map of \mathbb{Q} -vector spaces

$$\begin{aligned}\psi: \left(M_{\Lambda}^k\right)^{\vee} &\rightarrow H^2(\mathcal{F}_{\Lambda}, \mathbb{Q}) \\ c_{m,\ell} &\mapsto [H_{-m,\ell}]\end{aligned}$$

Relationship to modular forms

UPSHOT: There is a map of \mathbb{Q} -vector spaces

$$\begin{aligned}\psi: \left(M_{\Lambda}^k\right)^{\vee} &\rightarrow H^2(\mathcal{F}_{\Lambda}, \mathbb{Q}) \\ c_{m,\ell} &\mapsto [H_{-m,\ell}]\end{aligned}$$

Remark

The Bergeron–Li–Millson–Moeglin result that (for Λ splitting 2 copies of U)

$$\mathrm{Pic}_{\mathbb{Q}}(\mathcal{F}_{\Lambda}) = \langle H_{m,\ell} \rangle$$

in fact is showing that $\psi: \left(M_{\Lambda}^{k,\circ}\right)^{\vee} \rightarrow H^2(\mathcal{F}_{\Lambda}, \mathbb{Q})$ is an isomorphism, where $k = \frac{n+2}{2}$.

(Injectivity already shown by Bruinier).

Higher codimension: special cycles

- \mathcal{S}_g = symmetric half-integral $g \times g$ -matrices (diagonal entries integer).
- For $v = (v_1, \dots, v_g) \in (\Lambda^\vee)^g$, denote by v^\perp the set of points in \mathcal{D}_Λ which are orthogonal to every entry of v .
- The *moment matrix* $q(v)$ of v is $q(v) = \frac{1}{2}(\langle v_a, v_b \rangle)_{a,b=1,\dots,g}$. Note that if $v \in \Lambda^g$, then $q(v) \in \mathcal{S}_g$.

Special Cycles

Let $\ell \in (D(L))^g$ and let $T \in q(\ell) + \mathcal{S}_g$. The formal sum

$$\sum_{\substack{v \in \ell + \Lambda^g \\ q(v) = T}} v^\perp$$

is a locally finite $\tilde{O}^+(\Lambda)$ -invariant cycle in \mathcal{D}_Λ .

⇒ Descends to a codimension g **special cycle** $Z(T, \ell)$ on \mathcal{F}_Λ .

Higher codimension: modular forms

- \mathbb{H}_g = Siegel upper half-space of genus g , $\mathrm{Sp}_{2g}(\mathbb{R})$ acts on \mathbb{H}_g
- $\rho_{\Lambda,g}$ = Weil rep. of the metaplectic cover $\mathrm{Mp}_{2g}(\mathbb{Z})$ of $\mathrm{Sp}_{2g}(\mathbb{Z})$ acting on $\mathbb{C}[D(\Lambda)^g]$

Definition: Higher genus modular forms

A **vector-valued (Siegel) modular form** of weight k and genus g with respect to the Weil representation $\rho_{\Lambda,g}$ is a holomorphic function $f: \mathbb{H}_g \rightarrow \mathbb{C}[D(\Lambda)^g]$ such that

$$f(\gamma \cdot \tau) = \phi(\tau)^{2k} \rho_{\Lambda,g}(\gamma) f(\tau) \quad \text{for all } \gamma = (M, \phi) \in \mathrm{Mp}_{2g}(\mathbb{Z}).$$

If $g = 1$, then we also require that f is holomorphic at ∞ .

Higher codimension: modular forms

- \mathbb{H}_g = Siegel upper half-space of genus g , $\mathrm{Sp}_{2g}(\mathbb{R})$ acts on \mathbb{H}_g
- $\rho_{\Lambda, g}$ = Weil rep. of the metaplectic cover $\mathrm{Mp}_{2g}(\mathbb{Z})$ of $\mathrm{Sp}_{2g}(\mathbb{Z})$ acting on $\mathbb{C}[D(\Lambda)^g]$

Definition: Higher genus modular forms

A **vector-valued (Siegel) modular form** of weight k and genus g with respect to the Weil representation $\rho_{\Lambda, g}$ is a holomorphic function $f: \mathbb{H}_g \rightarrow \mathbb{C}[D(\Lambda)^g]$ such that

$$f(\gamma \cdot \tau) = \phi(\tau)^{2k} \rho_{\Lambda, g}(\gamma) f(\tau) \quad \text{for all } \gamma = (M, \phi) \in \mathrm{Mp}_{2g}(\mathbb{Z}).$$

If $g = 1$, then we also require that f is holomorphic at ∞ .

- $M_{g, \Lambda}^k = \mathbb{Q}$ -vector space of such modular forms.

Higher codimension: modular forms

- \mathbb{H}_g = Siegel upper half-space of genus g , $\mathrm{Sp}_{2g}(\mathbb{R})$ acts on \mathbb{H}_g
- $\rho_{\Lambda, g}$ = Weil rep. of the metaplectic cover $\mathrm{Mp}_{2g}(\mathbb{Z})$ of $\mathrm{Sp}_{2g}(\mathbb{Z})$ acting on $\mathbb{C}[D(\Lambda)^g]$

Definition: Higher genus modular forms

A **vector-valued (Siegel) modular form** of weight k and genus g with respect to the Weil representation $\rho_{\Lambda, g}$ is a holomorphic function $f: \mathbb{H}_g \rightarrow \mathbb{C}[D(\Lambda)^g]$ such that

$$f(\gamma \cdot \tau) = \phi(\tau)^{2k} \rho_{\Lambda, g}(\gamma) f(\tau) \quad \text{for all } \gamma = (M, \phi) \in \mathrm{Mp}_{2g}(\mathbb{Z}).$$

If $g = 1$, then we also require that f is holomorphic at ∞ .

- $M_{g, \Lambda}^k = \mathbb{Q}$ -vector space of such modular forms.
- Every $f \in M_{g, \Lambda}^k$ admits a Fourier expansion of the form

$$f(\tau) = \sum_{\ell \in D_{\Lambda}^g} \sum_{\substack{T \in q(\ell) + \mathcal{S}_g \\ T \leq 0}} \textcolor{blue}{a_{T, \ell}}(f) q^T \mathfrak{e}_{\ell}, \quad \text{where } q^T = e^{2\pi i \mathrm{tr}(T\tau)}.$$

Higher codimension

Theorem (Kudla–Millson)

$$\sum_{\ell \in D_{\Lambda}^g} \sum_{\substack{T \in q(\ell) + \mathcal{S}_g \\ T \leq 0}} [Z(T, \ell)] \cdot [-\omega]^{g - \text{rk } T} q^T \mathfrak{e}_{\ell} \in M_{g, \Lambda}^k \otimes H^{2g}(\mathcal{F}_{\Lambda}, \mathbb{Q})$$

- As before, get a map

$$(H^{2g}(\mathcal{F}_{\Lambda}, \mathbb{Q}))^{\vee} \rightarrow M_{g, \Lambda}^k$$
$$F \mapsto \sum_{\ell \in D_{\Lambda}^g} \sum_{\substack{T \in q(\ell) + \mathcal{S}_g \\ T \leq 0}} F([Z(T, \ell)]) \cdot [-\omega]^{g - \text{rk } T} q^T \mathfrak{e}_{\ell}.$$

Higher codimension

Theorem (Kudla–Millson)

$$\sum_{\ell \in D_{\Lambda}^g} \sum_{\substack{T \in q(\ell) + \mathcal{S}_g \\ T \leq 0}} [Z(T, \ell)] \cdot [-\omega]^{g - \text{rk } T} q^T \mathfrak{e}_{\ell} \in M_{g, \Lambda}^k \otimes H^{2g}(\mathcal{F}_{\Lambda}, \mathbb{Q})$$

- As before, get a map

$$(H^{2g}(\mathcal{F}_{\Lambda}, \mathbb{Q}))^{\vee} \rightarrow M_{g, \Lambda}^k$$
$$F \mapsto \sum_{\ell \in D_{\Lambda}^g} \sum_{\substack{T \in q(\ell) + \mathcal{S}_g \\ T \leq 0}} F([Z(T, \ell)]) \cdot [-\omega]^{g - \text{rk } T} q^T \mathfrak{e}_{\ell}.$$

- Dualizing we have

$$\psi: (M_{g, \Lambda}^k)^{\vee} \rightarrow H^{2g}(\mathcal{F}_{\Lambda}, \mathbb{Q})$$
$$c_{-T, \ell} \mapsto [Z(T, \ell)]$$

Main Goal

UPSHOT

There is a map of \mathbb{Q} -vector spaces

$$\psi: \left(M_{g,\Lambda}^k\right)^\vee \rightarrow H^{2g}(\mathcal{F}_\Lambda, \mathbb{Q})$$

If Λ splits off $U^{\oplus 2}$ and $n \geq 3$ (the geometric setting), get an isomorphism

$$\psi: \left(M_{1,\Lambda}^{k,\circ}\right)^\vee \xrightarrow{\cong} \text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda).$$

Main Goal

UPSHOT

There is a map of \mathbb{Q} -vector spaces

$$\psi: \left(M_{g, \Lambda}^k \right)^\vee \rightarrow H^{2g}(\mathcal{F}_\Lambda, \mathbb{Q})$$

If Λ splits off $U^{\oplus 2}$ and $n \geq 3$ (the geometric setting), get an isomorphism

$$\psi: \left(M_{1, \Lambda}^{k, \circ} \right)^\vee \xrightarrow{\cong} \text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda).$$

MAIN GOAL: Exploit the above for geometric applications

Main Goal

UPSHOT

There is a map of \mathbb{Q} -vector spaces

$$\psi: \left(M_{g,\Lambda}^k\right)^\vee \rightarrow H^{2g}(\mathcal{F}_\Lambda, \mathbb{Q})$$

If Λ splits off $U^{\oplus 2}$ and $n \geq 3$ (the geometric setting), get an isomorphism

$$\psi: \left(M_{1,\Lambda}^{k,\circ}\right)^\vee \xrightarrow{\cong} \text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda).$$

MAIN GOAL: Exploit the above for geometric applications

Motivating questions

- Unirationality/uniruledness of \mathcal{F}_Λ ?

Main Goal

UPSHOT

There is a map of \mathbb{Q} -vector spaces

$$\psi: \left(M_{g,\Lambda}^k\right)^\vee \rightarrow H^{2g}(\mathcal{F}_\Lambda, \mathbb{Q})$$

If Λ splits off $U^{\oplus 2}$ and $n \geq 3$ (the geometric setting), get an isomorphism

$$\psi: \left(M_{1,\Lambda}^{k,\circ}\right)^\vee \xrightarrow{\cong} \text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda).$$

MAIN GOAL: Exploit the above for geometric applications

Motivating questions

- Unirationality/uniruledness of \mathcal{F}_Λ ?
- Special cycles on \mathcal{F}_Λ under “tautological maps”?

Main Goal

UPSHOT

There is a map of \mathbb{Q} -vector spaces

$$\psi: \left(M_{g,\Lambda}^k\right)^\vee \rightarrow H^{2g}(\mathcal{F}_\Lambda, \mathbb{Q})$$

If Λ splits off $U^{\oplus 2}$ and $n \geq 3$ (the geometric setting), get an isomorphism

$$\psi: \left(M_{1,\Lambda}^{k,\circ}\right)^\vee \xrightarrow{\cong} \text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda).$$

MAIN GOAL: Exploit the above for geometric applications

Motivating questions

- Unirationality/uniruledness of \mathcal{F}_Λ ?
- Special cycles on \mathcal{F}_Λ under “tautological maps”?
- Effective and extremal divisors on \mathcal{F}_Λ ?

Uniruledness of \mathcal{F}_Λ

Let Λ be an even lattice of signature $(2, n)$ with $n \geq 3$ splitting off two copies of U .

For $k = \frac{n+2}{2}$

$$\psi: \left(M_{1,\Lambda}^{k,\circ}\right)^\vee \xrightarrow{\cong} \text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda).$$

Uniruledness of \mathcal{F}_Λ

Let Λ be an even lattice of signature $(2, n)$ with $n \geq 3$ splitting off two copies of U .
For $k = \frac{n+2}{2}$

$$\psi: \left(M_{1,\Lambda}^{k,\circ}\right)^\vee \xrightarrow{\cong} \text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda).$$

In $M_{1,\Lambda}^{k,\circ}$ is the **Eisenstein series**

$$E_{k,\Lambda}(\tau) = \sum_{(A,\phi) \in \tilde{\Gamma}_\infty \backslash \text{Mp}_2(\mathbb{Z})} \phi(\tau)^{2k} \cdot \rho_\Lambda(A, \phi)^{-1} \mathfrak{e}_0 = \sum_{m,\ell} \textcolor{blue}{e}_{m,\ell} q^m \mathfrak{e}_\ell.$$

Uniruledness of \mathcal{F}_Λ

Let Λ be an even lattice of signature $(2, n)$ with $n \geq 3$ splitting off two copies of U .
For $k = \frac{n+2}{2}$

$$\psi: \left(M_{1,\Lambda}^{k,\circ}\right)^\vee \xrightarrow{\cong} \text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda).$$

In $M_{1,\Lambda}^{k,\circ}$ is the **Eisenstein series**

$$E_{k,\Lambda}(\tau) = \sum_{(A,\phi) \in \tilde{\Gamma}_\infty \backslash \text{Mp}_2(\mathbb{Z})} \phi(\tau)^{2k} \cdot \rho_\Lambda(A, \phi)^{-1} \mathfrak{e}_0 = \sum_{m,\ell} \textcolor{blue}{e}_{m,\ell} q^m \mathfrak{e}_\ell.$$

Proposition (Barros–Beri–F.–Williams '24)

The orthogonal modular variety \mathcal{F}_Λ is uniruled if

$$n \textcolor{blue}{e}_{0,0} + \frac{1}{4} \textcolor{blue}{e}_{1,0} < 0.$$

Uniruledness of \mathcal{F}_Λ

Proposition (Barros–Beri–F.–Williams '24)

The orthogonal modular variety \mathcal{F}_Λ is uniruled if $ne_{0,0} + \frac{1}{4}e_{1,0} < 0$.

PROOF IDEA:

- Choose curve class $C = \lambda^{n-1}$ to not meet boundary of \mathcal{F}_Λ^{BB} (hence same for $\mathcal{F}_\Lambda^{\text{tor}}$).

Uniruledness of \mathcal{F}_Λ

Proposition (Barros–Beri–F.–Williams '24)

The orthogonal modular variety \mathcal{F}_Λ is uniruled if $ne_{0,0} + \frac{1}{4}e_{1,0} < 0$.

PROOF IDEA:

- Choose curve class $C = \lambda^{n-1}$ to not meet boundary of \mathcal{F}_Λ^{BB} (hence same for $\mathcal{F}_\Lambda^{\text{tor}}$).
- The map

$$\deg: \text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda) \rightarrow \mathbb{Q}$$

$$H_{-m,\ell} \mapsto H_{-m,\ell} \cdot C$$

Uniruledness of \mathcal{F}_Λ

Proposition (Barros–Beri–F.–Williams '24)

The orthogonal modular variety \mathcal{F}_Λ is uniruled if $ne_{0,0} + \frac{1}{4}e_{1,0} < 0$.

PROOF IDEA:

- Choose curve class $C = \lambda^{n-1}$ to not meet boundary of \mathcal{F}_Λ^{BB} (hence same for $\mathcal{F}_\Lambda^{\text{tor}}$).
- The map

$$\deg: \text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda) \rightarrow \mathbb{Q}$$

$$H_{-m,\ell} \mapsto H_{-m,\ell} \cdot C$$

lies in $(\text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda))^\vee \cong M_{1,\Lambda}^{k,\circ}$.

Uniruledness of \mathcal{F}_Λ

Proposition (Barros–Beri–F.–Williams '24)

The orthogonal modular variety \mathcal{F}_Λ is uniruled if $ne_{0,0} + \frac{1}{4}e_{1,0} < 0$.

PROOF IDEA:

- Choose curve class $C = \lambda^{n-1}$ to not meet boundary of \mathcal{F}_Λ^{BB} (hence same for $\mathcal{F}_\Lambda^{\text{tor}}$).
- The map

$$\begin{aligned}\deg: \text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda) &\rightarrow \mathbb{Q} \\ H_{-m,\ell} &\mapsto H_{-m,\ell} \cdot C\end{aligned}$$

lies in $(\text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda))^\vee \cong M_{1,\Lambda}^{k,\circ}$. Hence corresponds to

$$\sum_{\ell \in D(\Lambda)} \sum_{\substack{m \in q(\ell) + \mathbb{Z} \\ m \leq 0}} (H_{m,\ell} \cdot C) q^m \mathfrak{e}_\ell. \quad (3)$$

Uniruledness of \mathcal{F}_Λ

Proposition (Barros–Beri–F.–Williams '24)

The orthogonal modular variety \mathcal{F}_Λ is uniruled if $ne_{0,0} + \frac{1}{4}e_{1,0} < 0$.

PROOF IDEA:

- Choose curve class $C = \lambda^{n-1}$ to not meet boundary of \mathcal{F}_Λ^{BB} (hence same for $\mathcal{F}_\Lambda^{\text{tor}}$).
- The map

$$\begin{aligned}\deg: \text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda) &\rightarrow \mathbb{Q} \\ H_{-m,\ell} &\mapsto H_{-m,\ell} \cdot C\end{aligned}$$

lies in $(\text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda))^\vee \cong M_{1,\Lambda}^{k,\circ}$. Hence corresponds to

$$\sum_{\ell \in D(\Lambda)} \sum_{\substack{m \in q(\ell) + \mathbb{Z} \\ m \leq 0}} (H_{m,\ell} \cdot C) q^m \mathfrak{e}_\ell. \quad (3)$$

- By work of Kudla this series (3) is equal to $\gamma E_{k,\Lambda}(\tau)$ for some $\gamma > 0$

Uniruledness of \mathcal{F}_Λ

Proposition (Barros–Beri–F.–Williams '24)

The orthogonal modular variety \mathcal{F}_Λ is uniruled if $ne_{0,0} + \frac{1}{4}e_{1,0} < 0$.

PROOF IDEA:

- Hence each $H_{m,\ell} \cdot C = \gamma e_{m,\ell}$.

Uniruledness of \mathcal{F}_Λ

Proposition (Barros–Beri–F.–Williams '24)

The orthogonal modular variety \mathcal{F}_Λ is uniruled if $ne_{0,0} + \frac{1}{4}e_{1,0} < 0$.

PROOF IDEA:

- Hence each $H_{m,\ell} \cdot C = \gamma e_{m,\ell}$.
- If Y is a resolution of $\mathcal{F}_\Lambda^{\text{tor}}$ we have

$$K_Y \cdot C = \left(\sum_{i=1}^r \alpha_{m,\mu} H_{-m,\mu} \right) \cdot C \leq \gamma \left(ne_{0,0} + \frac{1}{4}e_{1,0} \right).$$

Uniruledness of \mathcal{F}_Λ

Proposition (Barros–Beri–F.–Williams '24)

The orthogonal modular variety \mathcal{F}_Λ is uniruled if $ne_{0,0} + \frac{1}{4}e_{1,0} < 0$.

PROOF IDEA:

- Hence each $H_{m,\ell} \cdot C = \gamma e_{m,\ell}$.
- If Y is a resolution of $\mathcal{F}_\Lambda^{\text{tor}}$ we have

$$K_Y \cdot C = \left(\sum_{i=1}^r \alpha_{m,\mu} H_{-m,\mu} \right) \cdot C \leq \gamma \left(ne_{0,0} + \frac{1}{4}e_{1,0} \right).$$

- So if $ne_{0,0} + \frac{1}{4}e_{1,0} < 0$, then $K_Y \cdot C < 0$ and so Y and thus \mathcal{F}_Λ is uniruled.

Uniruledness for some moduli of hyperkähler manifolds

Proposition (Barros–Beri–F.–Williams '24)

The orthogonal modular variety \mathcal{F}_Λ is uniruled if $ne_{0,0} + \frac{1}{4}e_{1,0} < 0$.

Corollary

The moduli space $\mathcal{M}_{\text{OG}6,2d}^\gamma$ is uniruled in the following cases

- (i) when $\gamma = 1$ for $d \leq 12$,
- (ii) when $\gamma = 2$ for $t \leq 10$ and $t = 12$ with $d = 4t - 1$,
- (iii) when $\gamma = 2$ for $t \leq 9$ and $t = 11, 13$ with $d = 4t - 2$.

The moduli spaces $\mathcal{M}_{\text{Kum}_n,2}^1$ and $\mathcal{M}_{\text{Kum}_n,2}^2$ are uniruled in the following cases:

- (i) when $\gamma = 1$ for $n \leq 15$ and $n = 17, 20$,
- (ii) when $\gamma = 2$ for $t \leq 11$ and $t = 13, 15, 17, 19$, where $n = 4t - 2$.

Special cycles under pullback

Let $L \subset \Lambda$ sublattice of signature $(2, n')$ with $n' \leq n$.

Special cycles under pullback

Let $L \subset \Lambda$ sublattice of signature $(2, n')$ with $n' \leq n$.

- Get induced map $\varphi: \mathcal{F}_L \rightarrow \mathcal{F}_\Lambda$

Special cycles under pullback

Let $L \subset \Lambda$ sublattice of signature $(2, n')$ with $n' \leq n$.

- Get induced map $\varphi: \mathcal{F}_L \rightarrow \mathcal{F}_\Lambda$ and so

$$\varphi^*: H^{2g}(\mathcal{F}_\Lambda, \mathbb{C}) \longrightarrow H^{2g}(\mathcal{F}_L, \mathbb{C}).$$

Special cycles under pullback

Let $L \subset \Lambda$ sublattice of signature $(2, n')$ with $n' \leq n$.

- Get induced map $\varphi: \mathcal{F}_L \rightarrow \mathcal{F}_\Lambda$ and so

$$\varphi^*: H^{2g}(\mathcal{F}_\Lambda, \mathbb{C}) \longrightarrow H^{2g}(\mathcal{F}_L, \mathbb{C}).$$

Question

Describe pullback of special cycles?

Special cycles under pullback

Let $L \subset \Lambda$ sublattice of signature $(2, n')$ with $n' \leq n$. Let $K = L^\perp$ and $\Omega = L \oplus K$.

Theorem (Barros–F.–Zuffetti) (forthcoming '25)

The following diagram commutes

$$\begin{array}{ccc} (M_{g,\Lambda}^{\text{rk } \Lambda/2})^\vee & \xrightarrow{(\Theta_K)^\vee \circ \text{tr}_{\Lambda/\Omega}^\vee} & (M_{g,L}^{\text{rk } L/2})^\vee \\ \downarrow \psi_\Lambda & & \downarrow \psi_L \\ H^2(\mathcal{F}_\Lambda, \mathbb{C}) & \xrightarrow{\varphi^*} & H^2(\mathcal{F}_L, \mathbb{C}) \end{array} \quad (4)$$

In the above, $\text{tr}_{g,\Lambda/\Omega}: M_{g,\Omega}^k \rightarrow M_{g,\Lambda}^k$ is the trace map and $\Theta_{K,g}(\tau)$ is the vector-valued genus g theta function in $M_{g,K}^{\text{rk } K/2}$ arising from K .

Special cycles under pullback

Corollary (Barros–F.–Zuffetti) (forthcoming '25)

For the codimension g special cycle $Z(T, \bar{\ell})^\Lambda$ on \mathcal{F}_Λ , where $\bar{\ell} \in D(\Lambda)^g$, $T \in q(\bar{\ell}) + \mathcal{S}_g$, we have

$$\varphi^*([Z(T, \bar{\ell})^\Lambda]) = \sum_{\alpha \in (\Lambda/\Omega)^g} \sum_{\substack{t \in q((\alpha + \ell)_L) + \mathcal{S}_g \\ t \geq 0}} \theta_g(T - t, (\alpha + \ell)_K) [Z(t, (\alpha + \ell)_L)^L] \cup [-\omega]^{g - \text{rk } t},$$

where $\ell \in \Lambda^\vee/\Omega$ is any fixed preimage of $\bar{\ell}$ under $\Lambda^\vee/\Omega \rightarrow \Lambda^\vee/\Lambda$ and $\theta_g(T, \kappa)$ the Fourier coefficient of index (T, κ) of $\Theta_{K,g}$.

Special cycles under pullback

Corollary (Barros–F.–Zuffetti) (forthcoming '25)

For the codimension g special cycle $Z(T, \bar{\ell})^\Lambda$ on \mathcal{F}_Λ , where $\bar{\ell} \in D(\Lambda)^g$, $T \in q(\bar{\ell}) + \mathcal{S}_g$, we have

$$\varphi^*([Z(T, \bar{\ell})^\Lambda]) = \sum_{\alpha \in (\Lambda/\Omega)^g} \sum_{\substack{t \in q((\alpha + \ell)_L) + \mathcal{S}_g \\ t \geq 0}} \theta_g(T - t, (\alpha + \ell)_K) [Z(t, (\alpha + \ell)_L)^L] \cup [-\omega]^{g - \text{rk } t},$$

where $\ell \in \Lambda^\vee/\Omega$ is any fixed preimage of $\bar{\ell}$ under $\Lambda^\vee/\Omega \rightarrow \Lambda^\vee/\Lambda$ and $\theta_g(T, \kappa)$ the Fourier coefficient of index (T, κ) of $\Theta_{K,g}$.

POINT: We obtain an explicit description of the pullback of a special cycle.

Cones of effective divisors on \mathcal{F}_Λ

Question

What is $\overline{\text{Eff}}(\mathcal{F}_\Lambda)$?

Cones of effective divisors on \mathcal{F}_Λ

Question

What is $\overline{\text{Eff}}(\mathcal{F}_\Lambda)$?

$\text{Eff}^{NL}(\mathcal{F}_\Lambda) = \langle \text{effective } \mathbb{Q}\text{-linear combos of irr. comp. of Heegner divisors} \rangle$

Cones of effective divisors on \mathcal{F}_Λ

Question

What is $\overline{\text{Eff}}(\mathcal{F}_\Lambda)$?

$\text{Eff}^{NL}(\mathcal{F}_\Lambda) = \langle \text{effective } \mathbb{Q}\text{-linear combos of irr. comp. of Heegner divisors} \rangle$

$\text{Eff}_{\mathbb{R}}^{NL}(\mathcal{F}_\Lambda) \subset \overline{\text{Eff}}(\mathcal{F}_\Lambda)$

Cones of effective divisors on \mathcal{F}_Λ

Question

What is $\overline{\text{Eff}}(\mathcal{F}_\Lambda)$?

$\text{Eff}^{NL}(\mathcal{F}_\Lambda) = \langle \text{effective } \mathbb{Q}\text{-linear combos of irr. comp. of Heegner divisors} \rangle$

$$\text{Eff}_{\mathbb{R}}^{NL}(\mathcal{F}_\Lambda) \subset \overline{\text{Eff}}(\mathcal{F}_\Lambda)$$

- (Bruinier–Möller) $\text{Eff}^{NL}(\mathcal{F}_\Lambda)$ is polyhedral.

Cones of effective divisors on \mathcal{F}_Λ

Question

What is $\overline{\text{Eff}}(\mathcal{F}_\Lambda)$?

$\text{Eff}^{NL}(\mathcal{F}_\Lambda) = \langle \text{effective } \mathbb{Q}\text{-linear combos of irr. comp. of Heegner divisors} \rangle$

$$\text{Eff}_{\mathbb{R}}^{NL}(\mathcal{F}_\Lambda) \subset \overline{\text{Eff}}(\mathcal{F}_\Lambda)$$

- (Bruinier–Möller) $\text{Eff}^{NL}(\mathcal{F}_\Lambda)$ is polyhedral.

Question

Is $\text{Eff}_{\mathbb{R}}^{NL}(\mathcal{F}_\Lambda) = \overline{\text{Eff}}(\mathcal{F}_\Lambda)$?

Cones of effective divisors on \mathcal{F}_Λ

Theorem (Barros–Beri–F.–Williams '24)

For Λ splitting off $U^{\oplus 2}$ and $n \geq 3$, we give an explicit list of generators of $\text{Eff}^{NL}(\mathcal{F}_\Lambda)$.

Cones of effective divisors on \mathcal{F}_Λ

Theorem (Barros–Beri–F.–Williams '24)

For Λ splitting off $U^{\oplus 2}$ and $n \geq 3$, we give an explicit list of generators of $\text{Eff}^{NL}(\mathcal{F}_\Lambda)$.

Example

In the K3 setting, where

$$\Lambda = U^{\oplus 2} \oplus E_8(-1)^{\oplus 2} \oplus \mathbb{Z}\ell, \text{ with } \langle \ell, \ell \rangle = -2d$$

\mathcal{F}_Λ = moduli space of quasi-polarized K3 surfaces of degree $2d$

we write down $\text{Eff}^{NL}(\mathcal{F}_\Lambda)$ for $d \leq 20$ (e.g. $\text{Eff}^{NL}(\mathcal{F}_2) = \langle D_{0,0} - D_{1,1}, D_{1,1} \rangle$).

Cones of effective divisors on \mathcal{F}_Λ

Theorem (Barros–Beri–F.–Williams '24)

For Λ splitting off $U^{\oplus 2}$ and $n \geq 3$, we give an explicit list of generators of $\text{Eff}^{NL}(\mathcal{F}_\Lambda)$.

Example

In the K3 setting, where

$$\Lambda = U^{\oplus 2} \oplus E_8(-1)^{\oplus 2} \oplus \mathbb{Z}\ell, \text{ with } \langle \ell, \ell \rangle = -2d$$

\mathcal{F}_Λ = moduli space of quasi-polarized K3 surfaces of degree $2d$

we write down $\text{Eff}^{NL}(\mathcal{F}_\Lambda)$ for $d \leq 20$ (e.g. $\text{Eff}^{NL}(\mathcal{F}_2) = \langle D_{0,0} - D_{1,1}, D_{1,1} \rangle$).

KEY INGREDIENT OF PROOF: $\psi: \left(M_{1,\Lambda}^{k,\circ}\right)^\vee \xrightarrow{\cong} \text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda)$.

Cones of effective divisors on \mathcal{F}_Λ

Theorem (Barros–Beri–F.–Williams '24)

For Λ splitting off $U^{\oplus 2}$ and $n \geq 3$, we give an explicit list of generators of $\text{Eff}^{NL}(\mathcal{F}_\Lambda)$.

Example

In the K3 setting, where

$$\Lambda = U^{\oplus 2} \oplus E_8(-1)^{\oplus 2} \oplus \mathbb{Z}\ell, \text{ with } \langle \ell, \ell \rangle = -2d$$

\mathcal{F}_Λ = moduli space of quasi-polarized K3 surfaces of degree $2d$

we write down $\text{Eff}^{NL}(\mathcal{F}_\Lambda)$ for $d \leq 20$ (e.g. $\text{Eff}^{NL}(\mathcal{F}_2) = \langle D_{0,0} - D_{1,1}, D_{1,1} \rangle$).

KEY INGREDIENT OF PROOF: $\psi: \left(M_{1,\Lambda}^{k,\circ}\right)^\vee \xrightarrow{\cong} \text{Pic}_{\mathbb{Q}}(\mathcal{F}_\Lambda)$.

\implies translate to a problem about modular forms.

Extremal divisors on \mathcal{F}_Λ

Given $\text{Eff}_{\mathbb{R}}^{NL}(\mathcal{F}_\Lambda) \subset \overline{\text{Eff}}(\mathcal{F}_\Lambda)$ and we know generators of $\text{Eff}_{\mathbb{R}}^{NL}(\mathcal{F}_\Lambda)$

Extremal divisors on \mathcal{F}_Λ

Given $\text{Eff}_{\mathbb{R}}^{NL}(\mathcal{F}_\Lambda) \subset \overline{\text{Eff}}(\mathcal{F}_\Lambda)$ and we know generators of $\text{Eff}_{\mathbb{R}}^{NL}(\mathcal{F}_\Lambda)$

Question

Are the generators of $\text{Eff}_{\mathbb{R}}^{NL}(\mathcal{F}_\Lambda)$ extremal in $\overline{\text{Eff}}(\mathcal{F}_\Lambda)$?

Extremal divisors on \mathcal{F}_Λ

Given $\text{Eff}_{\mathbb{R}}^{NL}(\mathcal{F}_\Lambda) \subset \overline{\text{Eff}}(\mathcal{F}_\Lambda)$ and we know generators of $\text{Eff}_{\mathbb{R}}^{NL}(\mathcal{F}_\Lambda)$

Question

Are the generators of $\text{Eff}_{\mathbb{R}}^{NL}(\mathcal{F}_\Lambda)$ extremal in $\overline{\text{Eff}}(\mathcal{F}_\Lambda)$?

Theorem (Barros–F.–Zuffetti)

Suppose Λ splits off $U^{\oplus 2}$ and $n \geq 3$. Let $\rho \in \Lambda$ prim. s.t. $\rho^2 < 0$, $K = \mathbb{Z}\rho$, $L = K^\perp$. If

$$- \sum_{\substack{\alpha \in \Lambda/L \oplus K \\ 0 < t < -m}} e_{t,\alpha_L} < \frac{1}{2}$$

for $E_{\frac{n+1}{2}, L}(\tau) = \sum_{m,\ell} e_{m,\ell} q^m \mathfrak{e}_\ell$ the weight $\frac{\text{rk } L}{2}$ Eisenstein series for L , then the irreducible component P_{m,ρ_*}^Λ of H_{m,ρ_*}^Λ is extremal.

Extremal divisors on \mathcal{F}_Λ

Theorem (Barros–F.–Zuffetti)

Suppose Λ splits off $U^{\oplus 2}$ and $n \geq 3$. Let $\rho \in \Lambda$ prim. s.t. $\rho^2 < 0$, $K = \mathbb{Z}\rho$, $L = K^\perp$. If

$$-\sum_{\substack{\alpha \in \Lambda/L \oplus K \\ 0 < t < -m}} e_{t,\alpha_L} < \frac{1}{2},$$

then the irreducible component P_{m,ρ_*}^Λ of H_{m,ρ_*}^Λ is extremal.

PROOF IDEA:

- Find $L \subset \Lambda$ such that $\varphi: \mathcal{F}_L \rightarrow \mathcal{F}_\Lambda$ has image H_{m,ρ_*} .

Extremal divisors on \mathcal{F}_Λ

Theorem (Barros–F.–Zuffetti)

Suppose Λ splits off $U^{\oplus 2}$ and $n \geq 3$. Let $\rho \in \Lambda$ prim. s.t. $\rho^2 < 0$, $K = \mathbb{Z}\rho$, $L = K^\perp$. If

$$- \sum_{\substack{\alpha \in \Lambda/L \oplus K \\ 0 < t < -m}} e_{t,\alpha_L} < \frac{1}{2},$$

then the irreducible component P_{m,ρ_*}^Λ of H_{m,ρ_*}^Λ is extremal.

PROOF IDEA:

- Find $L \subset \Lambda$ such that $\varphi: \mathcal{F}_L \rightarrow \mathcal{F}_\Lambda$ has image H_{m,ρ_*} .
- Find curve class C (not meeting boundary of \mathcal{F}_Λ^{BB}) s.t. C covers P_{m,ρ_*}^Λ .

Extremal divisors on \mathcal{F}_Λ

Theorem (Barros–F.–Zuffetti)

Suppose Λ splits off $U^{\oplus 2}$ and $n \geq 3$. Let $\rho \in \Lambda$ prim. s.t. $\rho^2 < 0$, $K = \mathbb{Z}\rho$, $L = K^\perp$. If

$$- \sum_{\substack{\alpha \in \Lambda / L \oplus K \\ 0 < t < -m}} e_{t, \alpha_L} < \frac{1}{2},$$

then the irreducible component P_{m, ρ_*}^Λ of H_{m, ρ_*}^Λ is extremal.

PROOF IDEA:

- Find $L \subset \Lambda$ such that $\varphi: \mathcal{F}_L \rightarrow \mathcal{F}_\Lambda$ has image H_{m, ρ_*} .
- Find curve class C (not meeting boundary of \mathcal{F}_Λ^{BB}) s.t. C covers P_{m, ρ_*}^Λ .
Enough to show $C.H_{m, \rho_*}^\Lambda < 0$ ($\implies C.P_{m, \rho_*}^\Lambda < 0$)

Extremal divisors on \mathcal{F}_Λ

Theorem (Barros–F.–Zuffetti)

Suppose Λ splits off $U^{\oplus 2}$ and $n \geq 3$. Let $\rho \in \Lambda$ prim. s.t. $\rho^2 < 0$, $K = \mathbb{Z}\rho$, $L = K^\perp$. If

$$-\sum_{\substack{\alpha \in \Lambda/L \oplus K \\ 0 < t < -m}} e_{t,\alpha_L} < \frac{1}{2},$$

then the irreducible component P_{m,ρ_*}^Λ of H_{m,ρ_*}^Λ is extremal.

PROOF IDEA:

- Find $L \subset \Lambda$ such that $\varphi: \mathcal{F}_L \rightarrow \mathcal{F}_\Lambda$ has image H_{m,ρ_*} .
- Find curve class C (not meeting boundary of \mathcal{F}_Λ^{BB}) s.t. C covers P_{m,ρ_*}^Λ .
Enough to show $C \cdot H_{m,\rho_*}^\Lambda < 0$ ($\implies C \cdot P_{m,\rho_*}^\Lambda < 0$)
- Use [pullback formula for special cycles](#) to compute $\varphi^* H_{-m,\ell}$ and similar tricks as in uniruledness proof to get $\varphi^* C \cdot \varphi^* H_{-m,\ell} < 0$.

Extremal divisors on \mathcal{F}_Λ

Theorem (Barros–F.–Zuffetti)

Suppose Λ splits off $U^{\oplus 2}$ and $n \geq 3$. Let $\rho \in \Lambda$ prim. s.t. $\rho^2 < 0$, $K = \mathbb{Z}\rho$, $L = K^\perp$. If

$$-\sum_{\substack{\alpha \in \Lambda/L \oplus K \\ 0 < t < -m}} e_{t,\alpha_L} < \frac{1}{2},$$

then the irreducible component P_{m,ρ_*}^Λ of H_{m,ρ_*}^Λ is extremal.

PROOF IDEA:

- Find $L \subset \Lambda$ such that $\varphi: \mathcal{F}_L \rightarrow \mathcal{F}_\Lambda$ has image H_{m,ρ_*} .
- Find curve class C (not meeting boundary of \mathcal{F}_Λ^{BB}) s.t. C covers P_{m,ρ_*}^Λ .
Enough to show $C.H_{m,\rho_*}^\Lambda < 0$ ($\implies C.P_{m,\rho_*}^\Lambda < 0$)
- Use **pullback formula for special cycles** to compute $\varphi^*H_{-m,\ell}$ and similar tricks as in uniruledness proof to get $\varphi^*C \cdot \varphi^*H_{-m,\ell} < 0$.
- Projection formula implies $C.H_{-m,\ell} < 0$.

Extremal divisors on \mathcal{F}_Λ

Theorem (Barros–F.–Zuffetti)

Suppose Λ splits off $U^{\oplus 2}$ and $n \geq 3$. Let $\rho \in \Lambda$ prim. s.t. $\rho^2 < 0$, $K = \mathbb{Z}\rho$, $L = K^\perp$. If $-\sum_{\substack{\alpha \in \Lambda/L \oplus K \\ 0 < t < -m}} e_{t, \alpha_L} < \frac{1}{2}$, then the irreducible component P_{m, ρ_*}^Λ of H_{m, ρ_*}^Λ is extremal.

Extremal divisors on \mathcal{F}_Λ

Theorem (Barros–F.–Zuffetti)

Suppose Λ splits off $U^{\oplus 2}$ and $n \geq 3$. Let $\rho \in \Lambda$ prim. s.t. $\rho^2 < 0$, $K = \mathbb{Z}\rho$, $L = K^\perp$. If $-\sum_{\substack{\alpha \in \Lambda/L \oplus K \\ 0 < t < -m}} e_{t,\alpha_L} < \frac{1}{2}$, then the irreducible component P_{m,ρ_*}^Λ of H_{m,ρ_*}^Λ is extremal.

Example

In the K3 setting, for low degrees $d \leq 7$, this shows that all generators of $\text{Eff}_{\mathbb{R}}^{NL}(\mathcal{F}_\Lambda)$ except the nodal Noether–Lefschetz divisor $D_{0,0}$ are extremal in $\overline{\text{Eff}}(\mathcal{F}_\Lambda)$.

Extremal divisors on \mathcal{F}_Λ

Theorem (Barros–F.–Zuffetti)

Suppose Λ splits off $U^{\oplus 2}$ and $n \geq 3$. Let $\rho \in \Lambda$ prim. s.t. $\rho^2 < 0$, $K = \mathbb{Z}\rho$, $L = K^\perp$. If $-\sum_{\substack{\alpha \in \Lambda/L \oplus K \\ 0 < t < -m}} e_{t,\alpha_L} < \frac{1}{2}$, then the irreducible component P_{m,ρ_*}^Λ of H_{m,ρ_*}^Λ is extremal.

Example

In the K3 setting, for low degrees $d \leq 7$, this shows that all generators of $\text{Eff}_{\mathbb{R}}^{NL}(\mathcal{F}_\Lambda)$ except the nodal Noether–Lefschetz divisor $D_{0,0}$ are extremal in $\overline{\text{Eff}}(\mathcal{F}_\Lambda)$.

Corollary (Barros–F.–Zuffetti)

The orthogonal modular variety \mathcal{F}_Λ with $\Lambda = U^{\oplus 2} \oplus A_1(-1) \oplus A_1(-3)$ partially compactifying the moduli space $\mathcal{M}_{\text{Kum}_2,2}^1$ satisfies

$$\text{Eff}_{\mathbb{R}}^{NL}(\mathcal{F}_\Lambda) = \overline{\text{Eff}}(\mathcal{F}_\Lambda).$$

The End