

BOUNDEDNESS OF ABELIAN FIBRATIONS

Philip Engel

(joint with S. Filipazzi, F. Greer, M. Mauri, & R. Svaldi)

January 30, 2025

Definition

A collection $\{X_i\}_{i \in I}$ of projective varieties is *bounded* if there exists a family of projective varieties $\mathcal{X} \rightarrow \mathcal{T}$, over a quasiprojective base \mathcal{T} , such that for all $i \in I$, there exists a $t \in \mathcal{T}$ for which $X_i \simeq \mathcal{X}_t$.

Similar notions:

- ① Birational boundedness
- ② Bounded in codimension one
- ③ Boundedness of pairs
- ④ Analytic boundedness
- ⑤ ...

Definition

A collection $\{X_i\}_{i \in I}$ of projective varieties is *bounded* if there exists a family of projective varieties $\mathcal{X} \rightarrow \mathcal{T}$, over a quasiprojective base \mathcal{T} , such that for all $i \in I$, there exists a $t \in \mathcal{T}$ for which $X_i \simeq \mathcal{X}_t$.

Similar notions:

- ① Birational boundedness
- ② Bounded in codimension one
- ③ Boundedness of pairs
- ④ Analytic boundedness
- ⑤ ...

Question

Which classes of projective varieties are bounded?

Examples:

- ① Subschemes of \mathbb{P}^n with a fixed Hilbert polynomial
- ② Smooth Fano varieties of a fixed dimension
- ③ K3 and abelian surfaces: Analytically bounded, but algebraically unbounded (moduli of K3 surfaces \mathcal{F}_{2d} for any degree $2d > 0$)

What about K -trivial varieties of higher dimension?

Question

Which classes of projective varieties are bounded?

Examples:

- ① Subschemes of \mathbb{P}^n with a fixed Hilbert polynomial
- ② Smooth Fano varieties of a fixed dimension
- ③ K3 and abelian surfaces: Analytically bounded, but algebraically unbounded (moduli of K3 surfaces \mathcal{F}_{2d} for any degree $2d > 0$)

What about K -trivial varieties of higher dimension?

Introduction: K -trivial varieties

Definition

A K -trivial variety is a normal projective variety X with canonical singularities such that $K_X \sim 0$. We say that X is

- (CY) *Calabi-Yau* if $H^0(X, \Omega^{[k]}) = 0$ for all $0 < k < \dim X \geq 3$;
- (ICY) *irreducible Calabi-Yau* if all quasi-étale covers of X are CY;
- (PS) *primitive symplectic* if $H^0(X, \Omega^{[1]}) = 0$, $H^0(X, \Omega^{[2]}) = \mathbb{C}\sigma$ and σ is symplectic on the smooth locus of X ;
- (IS) *irreducible symplectic* if all quasi-étale covers of X are PS;
- (AV) an *abelian variety* if $H^0(X, \Omega^{[1]}) = \dim X$.

Theorem (Beauville-Bogomolov decomposition)

Every variety with numerically trivial canonical bundle and klt singularities admits a quasi-étale cover which is a product of ICY varieties, IS varieties, and an abelian variety.

Introduction: K -trivial varieties

Definition

A K -trivial variety is a normal projective variety X with canonical singularities such that $K_X \sim 0$. We say that X is

- (CY) *Calabi-Yau* if $H^0(X, \Omega^{[k]}) = 0$ for all $0 < k < \dim X \geq 3$;
- (ICY) *irreducible Calabi-Yau* if all quasi-étale covers of X are CY;
- (PS) *primitive symplectic* if $H^0(X, \Omega^{[1]}) = 0$, $H^0(X, \Omega^{[2]}) = \mathbb{C}\sigma$ and σ is symplectic on the smooth locus of X ;
- (IS) *irreducible symplectic* if all quasi-étale covers of X are PS;
- (AV) an *abelian variety* if $H^0(X, \Omega^{[1]}) = \dim X$.

Theorem (Beauville-Bogomolov decomposition)

Every variety with numerically trivial canonical bundle and klt singularities admits a quasi-étale cover which is a product of ICY varieties, IS varieties, and an abelian variety.

Example

Smooth hypersurfaces of degree $d + 1$ in \mathbb{P}^d are irreducible Calabi-Yau varieties.

Example (Alexeev)

Let G be a finite group acting on a lattice L and suppose $L_{\mathbb{C}}$ is an irreducible representation of G . Then, for any abelian surface A ,

$$X := G \backslash L \otimes A$$

is a primitive symplectic variety, but is not irreducible symplectic; X has a quasi-étale cover by the abelian variety $L \otimes A \simeq A^{\oplus \text{rk } L}$.

Example

Smooth hypersurfaces of degree $d + 1$ in \mathbb{P}^d are irreducible Calabi-Yau varieties.

Example (Alexeev)

Let G be a finite group acting on a lattice L and suppose $L_{\mathbb{C}}$ is an irreducible representation of G . Then, for any abelian surface A ,

$$X := G \backslash L \otimes A$$

is a primitive symplectic variety, but is not irreducible symplectic; X has a quasi-étale cover by the abelian variety $L \otimes A \simeq A^{\oplus \text{rk } L}$.

Are Calabi-Yau varieties of a fixed dimension bounded? Are K -trivial varieties of a fixed dimension analytically bounded?

This is a famous and very difficult problem; we don't have techniques to attack the general question.

Definition

A *fibration* $f : X \rightarrow Y$ is a surjective, proper morphism of normal varieties with connected fibers and $0 < \dim Y < \dim X$.

If $K_X \sim 0$, by adjunction, the general fiber of f is also K -trivial.

Are Calabi-Yau varieties of a fixed dimension bounded? Are K -trivial varieties of a fixed dimension analytically bounded?

This is a famous and very difficult problem; we don't have techniques to attack the general question.

Definition

A *fibration* $f : X \rightarrow Y$ is a surjective, proper morphism of normal varieties with connected fibers and $0 < \dim Y < \dim X$.

If $K_X \sim 0$, by adjunction, the general fiber of f is also K -trivial.

Main Results

Theorem ICY (E.-Filipazzi-Greer-Mauri-Svaldi)

- ① *Abelian-fibered irreducible Calabi-Yau varieties X , of a fixed dimension, are birationally bounded.*
- ② *Primitive symplectic-fibered irreducible Calabi-Yau varieties X , of a fixed dimension and fibered in a fixed analytic deformation class, are birationally bounded.*

A corollary: fibered ICY 3-folds are bounded (here it is not hard to pass from birational boundedness to boundedness).

Theorem PS (E.-Filipazzi-Greer-Mauri-Svaldi)

(Lagrangian-)fibered primitive symplectic varieties X , of a fixed dimension, are analytically bounded.

Main Results

Theorem ICY (E.-Filipazzi-Greer-Mauri-Svaldi)

- ① *Abelian-fibered irreducible Calabi-Yau varieties X , of a fixed dimension, are birationally bounded.*
- ② *Primitive symplectic-fibered irreducible Calabi-Yau varieties X , of a fixed dimension and fibered in a fixed analytic deformation class, are birationally bounded.*

A corollary: fibered ICY 3-folds are bounded (here it is not hard to pass from birational boundedness to boundedness).

Theorem PS (E.-Filipazzi-Greer-Mauri-Svaldi)

(Lagrangian-)fibered primitive symplectic varieties X , of a fixed dimension, are analytically bounded.

Main Results

Theorem ICY (E.-Filipazzi-Greer-Mauri-Svaldi)

- ① *Abelian-fibered irreducible Calabi-Yau varieties X , of a fixed dimension, are birationally bounded.*
- ② *Primitive symplectic-fibered irreducible Calabi-Yau varieties X , of a fixed dimension and fibered in a fixed analytic deformation class, are birationally bounded.*

A corollary: fibered ICY 3-folds are bounded (here it is not hard to pass from birational boundedness to boundedness).

Theorem PS (E.-Filipazzi-Greer-Mauri-Svaldi)

(Lagrangian-)fibered primitive symplectic varieties X , of a fixed dimension, are analytically bounded.

Conjecture (HyperKähler SYZ/Generalized Abundance)

Let X be a primitive symplectic variety of dimension $2d$, which admits a nontrivial nef line bundle $L \rightarrow X$ for which $L^{2d} = 0$. Then X admits a Lagrangian fibration.

By our second theorem:

Corollary

If the hyperKähler SYZ conjecture holds, there are only finitely many analytic deformation classes of primitive symplectic variety X , of a fixed dimension $2d$, satisfying $b_2(X) \geq 5$.

Conjecture (HyperKähler SYZ/Generalized Abundance)

Let X be a primitive symplectic variety of dimension $2d$, which admits a nontrivial nef line bundle $L \rightarrow X$ for which $L^{2d} = 0$. Then X admits a Lagrangian fibration.

By our second theorem:

Corollary

If the hyperKähler SYZ conjecture holds, there are only finitely many analytic deformation classes of primitive symplectic variety X , of a fixed dimension $2d$, satisfying $b_2(X) \geq 5$.

Canonical bundle formula

Let $f : X \rightarrow Y$ be a fibration in K -trivial varieties (with $K_X \sim_f 0$). The base admits the structure of a *generalized pair* (Y, B, \mathbf{M}) . An effective \mathbb{Q} -divisor (the *boundary divisor*)

$$B := \sum_{\substack{P \in Y \text{ prime} \\ \text{divisors}}} a_P P$$

measures singularities of X over the codimension 1 points of Y , while the *moduli divisor*

$$\mathbf{M} := c_1(\mathcal{H}^{g,0})$$

is the class of the \mathbb{Q} -line bundle formed from the $(g, 0)$ -part of the Hodge structures on the fibers of f (g = the fiber dimension).

Theorem (Canonical bundle formula)

$$K_X \sim f^*(K_Y + B + \mathbf{M})$$

Canonical bundle formula

Let $f : X \rightarrow Y$ be a fibration in K -trivial varieties (with $K_X \sim_f 0$). The base admits the structure of a *generalized pair* (Y, B, \mathbf{M}) . An effective \mathbb{Q} -divisor (the *boundary divisor*)

$$B := \sum_{\substack{P \subset Y \text{ prime} \\ \text{divisors}}} a_P P$$

measures singularities of X over the codimension 1 points of Y , while the *moduli divisor*

$$\mathbf{M} := c_1(\mathcal{H}^{g,0})$$

is the class of the \mathbb{Q} -line bundle formed from the $(g, 0)$ -part of the Hodge structures on the fibers of f (g = the fiber dimension).

Theorem (Canonical bundle formula)

$$K_X \sim f^*(K_Y + B + \mathbf{M})$$

Canonical bundle formula

Let $f : X \rightarrow Y$ be a fibration in K -trivial varieties (with $K_X \sim_f 0$). The base admits the structure of a *generalized pair* (Y, B, \mathbf{M}) . An effective \mathbb{Q} -divisor (the *boundary divisor*)

$$B := \sum_{\substack{P \subset Y \text{ prime} \\ \text{divisors}}} a_P P$$

measures singularities of X over the codimension 1 points of Y , while the *moduli divisor*

$$\mathbf{M} := c_1(\mathcal{H}^{g,0})$$

is the class of the \mathbb{Q} -line bundle formed from the $(g, 0)$ -part of the Hodge structures on the fibers of f (g = the fiber dimension).

Theorem (Canonical bundle formula)

$$K_X \sim f^*(K_Y + B + \mathbf{M})$$

Canonical bundle formula: Example

Let $f : X \rightarrow Y$ be a relatively minimal elliptic surface. Then

$$K_X \sim f^*(K_Y + B + j^* \mathcal{O}(\frac{1}{12}))$$

where $j : Y \rightarrow \mathbb{P}^1$ is the j -invariant, and $B = \sum a_P P$ and $a_P \in [0, 1)$ depends on the Kodaira type of the fiber:

$f^{-1}(P)$	$I_n(m)$	II	III	IV	I_n^*	II^*	III^*	IV^*
a_P	$\frac{m-1}{m}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{5}{6}$	$\frac{3}{4}$	$\frac{2}{3}$

Proof: Key steps

We outline the proof of birational boundedness of abelian fibrations $f : X \rightarrow Y$ of ICY varieties.

- Step 1: Bound the integer $c > 0$ for which $c\mathbf{M}$ is b -free.
- Step 2: Bound the possible bases (Y, B, \mathbf{M}) in codimension 1.
- Step 3: Bound (birationally) the Albanese fibration $f^{\text{Alb}} : X^{\text{Alb}} \rightarrow Y$ of any $f : X \rightarrow Y$ inducing (Y, B, \mathbf{M}) .
- Step 4: Bound the Tate–Shafarevich group, of abelian fibrations $f : X \rightarrow Y$ with a fixed Albanese and which induce (Y, B, \mathbf{M}) .

See also: Gross, birationally bounding elliptic CY 3-folds.

Proof: Key steps

We outline the proof of birational boundedness of abelian fibrations $f : X \rightarrow Y$ of ICY varieties.

- Step 1: Bound the integer $c > 0$ for which $c\mathbf{M}$ is b -free.
- Step 2: Bound the possible bases (Y, B, \mathbf{M}) in codimension 1.
- Step 3: Bound (birationally) the Albanese fibration $f^{\text{Alb}} : X^{\text{Alb}} \rightarrow Y$ of any $f : X \rightarrow Y$ inducing (Y, B, \mathbf{M}) .
- Step 4: Bound the Tate–Shafarevich group, of abelian fibrations $f : X \rightarrow Y$ with a fixed Albanese and which induce (Y, B, \mathbf{M}) .

See also: Gross, birationally bounding elliptic CY 3-folds.

Proof: Key steps

We outline the proof of birational boundedness of abelian fibrations $f : X \rightarrow Y$ of ICY varieties.

Step 1: Bound the integer $c > 0$ for which $c\mathbf{M}$ is b -free.

Step 2: Bound the possible bases (Y, B, \mathbf{M}) in codimension 1.

Step 3: Bound (birationally) the Albanese fibration $f^{\text{Alb}} : X^{\text{Alb}} \rightarrow Y$ of any $f : X \rightarrow Y$ inducing (Y, B, \mathbf{M}) .

Step 4: Bound the Tate–Shafarevich group, of abelian fibrations $f : X \rightarrow Y$ with a fixed Albanese and which induce (Y, B, \mathbf{M}) .

See also: Gross, birationally bounding elliptic CY 3-folds.

Proof: Key steps

We outline the proof of birational boundedness of abelian fibrations $f : X \rightarrow Y$ of ICY varieties.

- Step 1: Bound the integer $c > 0$ for which $c\mathbf{M}$ is b -free.
- Step 2: Bound the possible bases (Y, B, \mathbf{M}) in codimension 1.
- Step 3: Bound (birationally) the Albanese fibration $f^{\text{Alb}} : X^{\text{Alb}} \rightarrow Y$ of any $f : X \rightarrow Y$ inducing (Y, B, \mathbf{M}) .
- Step 4: Bound the Tate–Shafarevich group, of abelian fibrations $f : X \rightarrow Y$ with a fixed Albanese and which induce (Y, B, \mathbf{M}) .

See also: Gross, birationally bounding elliptic CY 3-folds.

Proof: Key steps

We outline the proof of birational boundedness of abelian fibrations $f : X \rightarrow Y$ of ICY varieties.

- Step 1: Bound the integer $c > 0$ for which $c\mathbf{M}$ is b -free.
- Step 2: Bound the possible bases (Y, B, \mathbf{M}) in codimension 1.
- Step 3: Bound (birationally) the Albanese fibration $f^{\text{Alb}} : X^{\text{Alb}} \rightarrow Y$ of any $f : X \rightarrow Y$ inducing (Y, B, \mathbf{M}) .
- Step 4: Bound the Tate–Shafarevich group, of abelian fibrations $f : X \rightarrow Y$ with a fixed Albanese and which induce (Y, B, \mathbf{M}) .

See also: Gross, birationally bounding elliptic CY 3-folds.

Proof: Step 1 (effective b -semiampleness)

Let $f : X \rightarrow Y$ be a fibration in K -trivial varieties. Then \mathbf{M} is b -nef, and conjecturally it is also b -semiample (“ b -semiampleness conjecture” of Prokhorov and Shokurov).

Relatedly, Laza conjectures that all moduli spaces \mathcal{M} of K -trivial varieties admit a “Baily-Borel” compactification $\mathcal{M} \hookrightarrow \overline{\mathcal{M}}$ on which the moduli divisor λ of the universal family is ample.

Proof: Step 1 (effective b -semiampleness)

Let $f : X \rightarrow Y$ be a fibration in K -trivial varieties. Then \mathbf{M} is b -nef, and conjecturally it is also b -semiample (“ b -semiampleness conjecture” of Prokhorov and Shokurov).

Relatedly, Laza conjectures that all moduli spaces \mathcal{M} of K -trivial varieties admit a “Baily-Borel” compactification $\mathcal{M} \hookrightarrow \overline{\mathcal{M}}$ on which the moduli divisor λ of the universal family is ample.

Proof: Step 1 (effective b -semiampleness)

For abelian and primitive symplectic varieties, the moduli space $\mathcal{M} = \Gamma \backslash \mathbb{D}$ is locally Hermitian symmetric and the Baily-Borel compactification $\overline{\Gamma \backslash \mathbb{D}}$ exists, by the Baily-Borel theorem.

Given an abelian (or primitive symplectic) fibration $f : X \rightarrow Y$, there is an induced period map

$$\Phi : Y \rightarrow \overline{\Gamma \backslash \mathbb{D}}.$$

Thus, $c\mathbf{M}$, $c > 0$ is b -free once the universal moduli divisor $c\lambda$ is free. The issue: moduli spaces of abelian g -folds are not finite in number. For all sequences \mathbf{d} of integers $d_1 | \dots | d_g$ we have a DM stack $\mathcal{A}_{g,\mathbf{d}}$ of \mathbf{d} -polarized abelian g -folds.

Question: Why is c uniform for all \mathbf{d} ?

Proof: Step 1 (effective b -semiampleness)

For abelian and primitive symplectic varieties, the moduli space $\mathcal{M} = \Gamma \backslash \mathbb{D}$ is locally Hermitian symmetric and the Baily-Borel compactification $\overline{\Gamma \backslash \mathbb{D}}$ exists, by the Baily-Borel theorem.

Given an abelian (or primitive symplectic) fibration $f : X \rightarrow Y$, there is an induced period map

$$\Phi : Y \rightarrow \overline{\Gamma \backslash \mathbb{D}}.$$

Thus, $c\mathbf{M}$, $c > 0$ is b -free once the universal moduli divisor $c\lambda$ is free. The issue: moduli spaces of abelian g -folds are not finite in number. For all sequences \mathbf{d} of integers $d_1 | \dots | d_g$ we have a DM stack $\mathcal{A}_{g,\mathbf{d}}$ of \mathbf{d} -polarized abelian g -folds.

Question: Why is c uniform for all \mathbf{d} ?

Proof: Step 1 (effective b -semiampleness)

For abelian and primitive symplectic varieties, the moduli space $\mathcal{M} = \Gamma \backslash \mathbb{D}$ is locally Hermitian symmetric and the Baily-Borel compactification $\overline{\Gamma \backslash \mathbb{D}}$ exists, by the Baily-Borel theorem.

Given an abelian (or primitive symplectic) fibration $f : X \rightarrow Y$, there is an induced period map

$$\Phi : Y \rightarrow \overline{\Gamma \backslash \mathbb{D}}.$$

Thus, $c\mathbf{M}$, $c > 0$ is b -free once the universal moduli divisor $c\lambda$ is free. The issue: moduli spaces of abelian g -folds are not finite in number. For all sequences \mathbf{d} of integers $d_1 | \dots | d_g$ we have a DM stack $\mathcal{A}_{g,\mathbf{d}}$ of \mathbf{d} -polarized abelian g -folds.

Question: Why is c uniform for all \mathbf{d} ?

Proof: Completion of Step 1 (effective b -semiampleness)

Answer: The “Zarhin trick.” All the Baily-Borel compactifications map into a single moduli space

$$\overline{A}_{g,\mathbf{d}} \rightarrow \overline{A}_{8g}$$

of PPAVs, and the Hodge bundle λ_{8g} pulls back to $8\lambda_g$ on each $\overline{A}_{g,\mathbf{d}}$ (critically, independent of \mathbf{d}).

Proof: The Zarhin trick sends $Zar : A \mapsto A^{\oplus 4} \oplus (A^*)^{\oplus 4}$ and so

$$H^{8g,0}(Zar(A)) \simeq H^{g,0}(A)^{\otimes 8}.$$

(For families of primitive symplectic varieties, we first apply the Kuga-Satake construction, then we use the Zarhin trick.)

Proof: Completion of Step 1 (effective b -semiampleness)

Answer: The “Zarhin trick.” All the Baily-Borel compactifications map into a single moduli space

$$\overline{A}_{g,\mathbf{d}} \rightarrow \overline{A}_{8g}$$

of PPAVs, and the Hodge bundle λ_{8g} pulls back to $8\lambda_g$ on each $\overline{A}_{g,\mathbf{d}}$ (critically, independent of \mathbf{d}).

Proof: The Zarhin trick sends $Zar : A \mapsto A^{\oplus 4} \oplus (A^*)^{\oplus 4}$ and so

$$H^{8g,0}(Zar(A)) \simeq H^{g,0}(A)^{\otimes 8}.$$

(For families of primitive symplectic varieties, we first apply the Kuga-Satake construction, then we use the Zarhin trick.)

Proof: Completion of Step 1 (effective b -semiampleness)

Answer: The “Zarhin trick.” All the Baily-Borel compactifications map into a single moduli space

$$\overline{A}_{g,\mathbf{d}} \rightarrow \overline{A}_{8g}$$

of PPAVs, and the Hodge bundle λ_{8g} pulls back to $8\lambda_g$ on each $\overline{A}_{g,\mathbf{d}}$ (critically, independent of \mathbf{d}).

Proof: The Zarhin trick sends $Zar : A \mapsto A^{\oplus 4} \oplus (A^*)^{\oplus 4}$ and so

$$H^{8g,0}(Zar(A)) \simeq H^{g,0}(A)^{\otimes 8}.$$

(For families of primitive symplectic varieties, we first apply the Kuga-Satake construction, then we use the Zarhin trick.)

Proof: Step 2 (bounding the base)

So in a fixed dimension, we bounded the integer c for which $c\mathbf{M}$ is b -free. Birkar–di Cerbo–Svaldi implies the bases (Y, B, \mathbf{M}) are bounded in codimension 1, when Y is rationally connected.

When X is ICY, this is true. So there is a finite type family

$$(\mathcal{Y}, \mathcal{B}, \mathcal{M}) \rightarrow \mathcal{T}$$

which contain all possible bases (up to small modification) of an abelian fibration $f: X \rightarrow Y$ of an ICY variety.

Proof: Step 2 (bounding the base)

So in a fixed dimension, we bounded the integer c for which $c\mathbf{M}$ is b -free. Birkar–di Cerbo–Svaldi implies the bases (Y, B, \mathbf{M}) are bounded in codimension 1, when Y is rationally connected.

When X is ICY, this is true. So there is a finite type family

$$(\mathcal{Y}, \mathcal{B}, \mathcal{M}) \rightarrow \mathcal{T}$$

which contain all possible bases (up to small modification) of an abelian fibration $f : X \rightarrow Y$ of an ICY variety.

Proof: Step 3 (bounding the Albanese fibration)

Our next goal (crucial): Bound the polarization type \mathbf{d} of the fibers, then the classifying morphism

$$\begin{aligned}\Phi : Y &\rightarrow \mathcal{A}_{g,\mathbf{d}} \\ y &\mapsto \mathrm{Aut}^0(X_y)\end{aligned}$$

Warning: In general, $f : X \rightarrow Y$ is not the pullback of the universal family $\mathcal{X}_{g,\mathbf{d}} \rightarrow \mathcal{A}_{g,\mathbf{d}}$ along the classifying morphism!! The stack $\mathcal{A}_{g,\mathbf{d}}$ classifies abelian varieties *with a distinguished origin*.

Given $f : X \rightarrow Y$, we define a birational class of abelian fibration $f^{\mathrm{Alb}} : X^{\mathrm{Alb}} \rightarrow Y$ whose fiber over $y \in Y$ is the group of translations $\mathrm{Aut}^0(X_y)$ —this is the pullback of the universal family along Φ .

X is birational to X^{Alb} iff X admits a rational section.

Proof: Step 3 (bounding the Albanese fibration)

Our next goal (crucial): Bound the polarization type \mathbf{d} of the fibers, then the classifying morphism

$$\begin{aligned}\Phi : Y &\rightarrow \mathcal{A}_{g,\mathbf{d}} \\ y &\mapsto \mathrm{Aut}^0(X_y)\end{aligned}$$

Warning: In general, $f : X \rightarrow Y$ is not the pullback of the universal family $\mathcal{X}_{g,\mathbf{d}} \rightarrow \mathcal{A}_{g,\mathbf{d}}$ along the classifying morphism!! The stack $\mathcal{A}_{g,\mathbf{d}}$ classifies abelian varieties *with a distinguished origin*.

Given $f : X \rightarrow Y$, we define a birational class of abelian fibration $f^{\mathrm{Alb}} : X^{\mathrm{Alb}} \rightarrow Y$ whose fiber over $y \in Y$ is the group of translations $\mathrm{Aut}^0(X_y)$ —this is the pullback of the universal family along Φ .

X is birational to X^{Alb} iff X admits a rational section.

Proof: Step 3 (bounding the Albanese fibration)

Our next goal (crucial): Bound the polarization type \mathbf{d} of the fibers, then the classifying morphism

$$\begin{aligned}\Phi : Y &\rightarrow \mathcal{A}_{g,\mathbf{d}} \\ y &\mapsto \mathrm{Aut}^0(X_y)\end{aligned}$$

Warning: In general, $f : X \rightarrow Y$ is not the pullback of the universal family $\mathcal{X}_{g,\mathbf{d}} \rightarrow \mathcal{A}_{g,\mathbf{d}}$ along the classifying morphism!! The stack $\mathcal{A}_{g,\mathbf{d}}$ classifies abelian varieties *with a distinguished origin*.

Given $f : X \rightarrow Y$, we define a birational class of abelian fibration $f^{\mathrm{Alb}} : X^{\mathrm{Alb}} \rightarrow Y$ whose fiber over $y \in Y$ is the group of translations $\mathrm{Aut}^0(X_y)$ —this is the pullback of the universal family along Φ .

X is birational to X^{Alb} iff X admits a rational section.

Proof: Step 3 (bounding the Albanese fibration)

Our next goal (crucial): Bound the polarization type \mathbf{d} of the fibers, then the classifying morphism

$$\begin{aligned}\Phi : Y &\rightarrow \mathcal{A}_{g,\mathbf{d}} \\ y &\mapsto \mathrm{Aut}^0(X_y)\end{aligned}$$

Warning: In general, $f : X \rightarrow Y$ is not the pullback of the universal family $\mathcal{X}_{g,\mathbf{d}} \rightarrow \mathcal{A}_{g,\mathbf{d}}$ along the classifying morphism!! The stack $\mathcal{A}_{g,\mathbf{d}}$ classifies abelian varieties *with a distinguished origin*.

Given $f : X \rightarrow Y$, we define a birational class of abelian fibration $f^{\mathrm{Alb}} : X^{\mathrm{Alb}} \rightarrow Y$ whose fiber over $y \in Y$ is the group of translations $\mathrm{Aut}^0(X_y)$ —this is the pullback of the universal family along Φ .

X is birational to X^{Alb} iff X admits a rational section.

Proof: Step 3, bounding the Albanese fibration

Again use Zarhin: By a volume argument, rational maps

$$\text{Zar} \circ \Phi : Y \rightarrow \overline{A}_{8g}$$

for which $(\text{Zar} \circ \Phi)^*(\lambda_{8g}) \equiv \mathbf{M}$ are bounded. So the space of all possible "Zarhin-tricked" period maps $(Y, \text{Zar} \circ \Phi)$ is bounded.

Question: Can we undo the Zarhin trick and in turn bound the original period map $\Phi : Y \rightarrow \overline{A}_{g,d}$?

Proof: Step 3, bounding the Albanese fibration

Again use Zarhin: By a volume argument, rational maps

$$\text{Zar} \circ \Phi : Y \rightarrow \overline{A}_{8g}$$

for which $(\text{Zar} \circ \Phi)^*(\lambda_{8g}) \equiv \mathbf{M}$ are bounded. So the space of all possible "Zarhin-tricked" period maps $(Y, \text{Zar} \circ \Phi)$ is bounded.

Question: **Can we undo the Zarhin trick and in turn bound the original period map $\Phi : Y \rightarrow \overline{A}_{g,d}$?**

Proof: Step 3 (bounding the Albanese fibration)

In general, no! For all $A \in \mathcal{A}_{g,d}$ we have a (very stupid) abelian fibration $A \rightarrow *$. The Zarhin-tricked period maps $* \rightarrow \overline{A}_{8g}$ lie in a bounded family. But the original collection of maps is unbounded, since we may take d arbitrary. To resolve this difficulty:

Lemma

If $h^2(X, \mathcal{O}) = 0$, the Zarin $\circ \Phi$ pullback of the universal \mathbb{Z}^{16g} -local system on \mathcal{A}_{8g} to the smooth locus $Y^o \subset Y$ of f recovers a polarization type d .

Proof.

Deligne's theorem of the fixed part. □

(Note: This lemma holds for a Lagrangian fibration $f : X \rightarrow Y$, which is key to proving Theorem PS.)

Proof: Step 3 (bounding the Albanese fibration)

In general, no! For all $A \in \mathcal{A}_{g,d}$ we have a (very stupid) abelian fibration $A \rightarrow *$. The Zarhin-tricked period maps $* \rightarrow \overline{A}_{8g}$ lie in a bounded family. But the original collection of maps is unbounded, since we may take d arbitrary. To resolve this difficulty:

Lemma

If $h^2(X, \mathcal{O}) = 0$, the $\text{Zar} \circ \Phi$ pullback of the universal \mathbb{Z}^{16g} -local system on \mathcal{A}_{8g} to the smooth locus $Y^o \subset Y$ of f recovers a polarization type d .

Proof.

Deligne's theorem of the fixed part. □

(Note: This lemma holds for a Lagrangian fibration $f : X \rightarrow Y$, which is key to proving Theorem PS.)

Proof: Step 3 (bounding the Albanese fibration)

In general, no! For all $A \in \mathcal{A}_{g,d}$ we have a (very stupid) abelian fibration $A \rightarrow *$. The Zarhin-tricked period maps $* \rightarrow \overline{A}_{8g}$ lie in a bounded family. But the original collection of maps is unbounded, since we may take d arbitrary. To resolve this difficulty:

Lemma

If $h^2(X, \mathcal{O}) = 0$, the Zarin $\circ \Phi$ pullback of the universal \mathbb{Z}^{16g} -local system on \mathcal{A}_{8g} to the smooth locus $Y^o \subset Y$ of f recovers a polarization type d .

Proof.

Deligne's theorem of the fixed part. □

(Note: This lemma holds for a Lagrangian fibration $f : X \rightarrow Y$, which is key to proving Theorem PS.)

Proof: Step 3 (bounding the Albanese fibration)

Thus, we have bounded the polarization type \mathbf{d} of a general fiber of $f : X \rightarrow Y$. Repeating the earlier volume argument, we bound the classifying morphism

$$\Phi^o : Y^o \rightarrow \mathcal{A}_{g,\mathbf{d}}$$

and in turn the birational class of the Albanese $f^{\text{Alb}} : X^{\text{Alb}} \rightarrow Y$.

(The role of the boundary divisor B is very subtle—it is critical to make a distinction between the period map to the coarse space $Y \rightarrow A_{g,\mathbf{d}}$ and the classifying map to the DM stack $Y^o \rightarrow \mathcal{A}_{g,\mathbf{d}}$. Lifts from the coarse space to the stack are controlled by the topology of the complement of $\text{supp } B$.)

Proof: Step 3 (bounding the Albanese fibration)

Thus, we have bounded the polarization type \mathbf{d} of a general fiber of $f : X \rightarrow Y$. Repeating the earlier volume argument, we bound the classifying morphism

$$\Phi^o : Y^o \rightarrow \mathcal{A}_{g,\mathbf{d}}$$

and in turn the birational class of the Albanese $f^{\text{Alb}} : X^{\text{Alb}} \rightarrow Y$.

(The role of the boundary divisor B is very subtle—it is critical to make a distinction between the period map to the coarse space $Y \rightarrow A_{g,\mathbf{d}}$ and the classifying map to the DM stack $Y^o \rightarrow \mathcal{A}_{g,\mathbf{d}}$. Lifts from the coarse space to the stack are controlled by the topology of the complement of $\text{supp } B$.)

Proof: Step 4 (bounding the Tate–Shafarevich group)

This step is very technical ($\approx 20\text{--}30$ pages). Question: How to bound $f : X \rightarrow Y$ from the data of $f^{\text{Alb}} : X^{\text{Alb}} \rightarrow Y$?

Set $Y^+ :=$ the **big** open subset of Y^{reg} where the discriminant of f is smooth, divisorial. Find a finite Galois G -cover $\tilde{Y}^+ \rightarrow Y^+$ depending only on $(X^{\text{Alb}} \rightarrow Y, B, M)$ for which we have a key diagram:

$$\begin{array}{ccccc} X^+ & \xleftarrow{/G} & \tilde{X}^+ & \xrightleftharpoons{\text{ét-loc}} & (\tilde{X}^+)^{\text{Alb}} \\ \downarrow f^+ & & \downarrow \tilde{f}^+ & & \searrow (\tilde{f}^+)^{\text{Alb}} \\ Y^+ & \xleftarrow{/G} & \tilde{Y}^+ & & \end{array}$$

Here $\tilde{f}^+ : \tilde{X}^+ \rightarrow \tilde{Y}^+$ is the normalized base change of the restriction $f^+ : X^+ \rightarrow Y^+$ and $(\tilde{f}^+)^{\text{Alb}}$ is a G -equivariant Kulikov model of the Albanese fibration of $\tilde{X}^+ \rightarrow \tilde{Y}^+$, to which \tilde{f}^+ is étale-locally birational.

Proof: Step 4 (bounding the Tate–Shafarevich group)

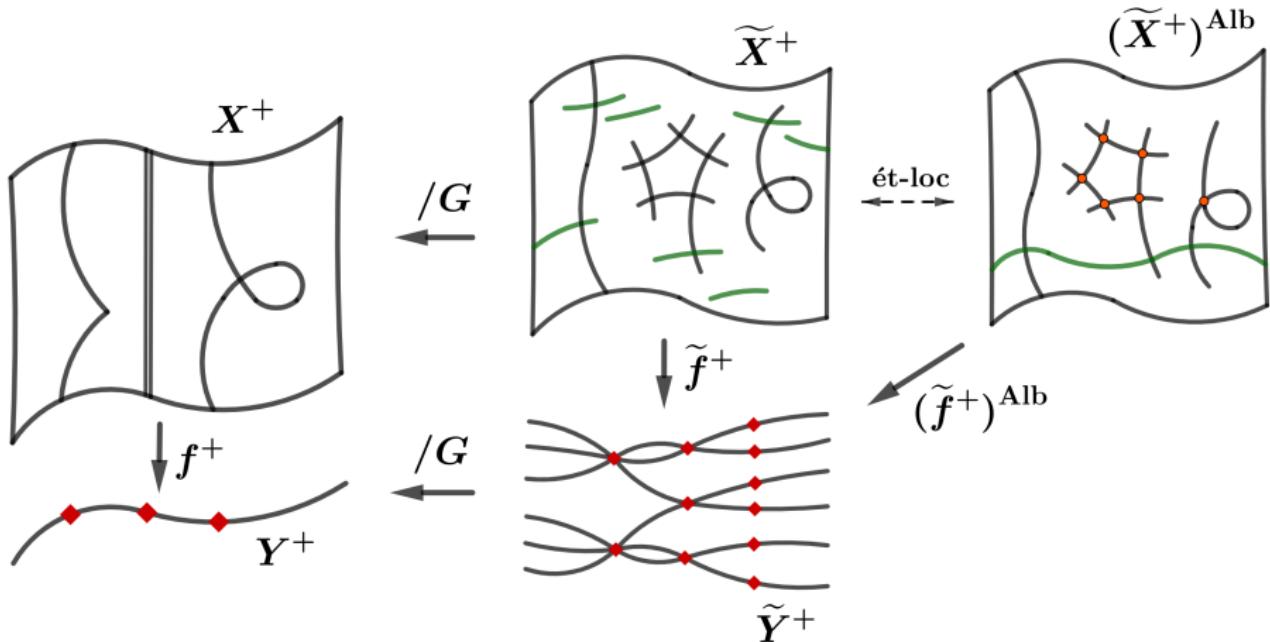
This step is very technical ($\approx 20\text{--}30$ pages). Question: How to bound $f : X \rightarrow Y$ from the data of $f^{\text{Alb}} : X^{\text{Alb}} \rightarrow Y$?

Set $Y^+ :=$ the **big** open subset of Y^{reg} where the discriminant of f is smooth, divisorial. Find a finite Galois G -cover $\tilde{Y}^+ \rightarrow Y^+$ depending only on $(X^{\text{Alb}} \rightarrow Y, B, \mathbf{M})$ for which we have a key diagram:

$$\begin{array}{ccccc} X^+ & \xleftarrow{/G} & \tilde{X}^+ & \xleftarrow{\text{ét-loc}} & (\tilde{X}^+)^{\text{Alb}} \\ \downarrow f^+ & & \downarrow \tilde{f}^+ & & \searrow (\tilde{f}^+)^{\text{Alb}} \\ Y^+ & \xleftarrow{/G} & \tilde{Y}^+ & & \end{array}$$

Here $\tilde{f}^+ : \tilde{X}^+ \rightarrow \tilde{Y}^+$ is the normalized base change of the restriction $f^+ : X^+ \rightarrow Y^+$ and $(\tilde{f}^+)^{\text{Alb}}$ is a G -equivariant Kulikov model of the Albanese fibration of $\tilde{X}^+ \rightarrow \tilde{Y}^+$, to which \tilde{f}^+ is étale-locally birational.

Proof: Step 4 (bounding the Tate–Shafarevich group)



The sections of $(\widetilde{f}^+)^{\text{Alb}}$ form a group scheme $P \rightarrow \widetilde{Y}^+$.

Proof: Step 4 (bounding the Tate–Shafarevich group)

Two important exact sequences: The component sequence

$$0 \rightarrow P^0 \rightarrow P \rightarrow \mu \rightarrow 0$$

where $\mu \rightarrow \widetilde{Y}^+$ is the relative component group of the Kulikov model, and the exponential exact sequence

$$0 \rightarrow \Gamma \rightarrow \mathfrak{p} \xrightarrow{\exp} P^0 \rightarrow 0$$

associated to the sheaf \mathfrak{p} of Lie algebras of P . Note: Γ is a constructible sheaf of finitely generated \mathbb{Z} -modules.

Proof: Step 4 (bounding the Tate–Shafarevich group)

$$\begin{array}{ccccc} X^+ & \xleftarrow{/G} & \widetilde{X}^+ & \xleftarrow{\text{loc}} & (\widetilde{X}^+)^{\text{Alb}} \\ \downarrow f^+ & & \downarrow \widetilde{f}^+ & & \searrow (\widetilde{f}^+)^{\text{Alb}} \\ Y^+ & \xleftarrow{/G} & \widetilde{Y}^+ & & \end{array}$$

Multiple fibers of $f : X \rightarrow Y$ in codimension 1 are encoded by a *multiplicity class* $m(f) \in H^0(Y^+, \mathcal{H}^1(G, P))$. If two fibrations f, f' with equal Albanese have $m(f) = m(f')$, then the difference between their birational classes is measured by the G -equivariant sheaf cohomology group

$$t(f) - t(f') \in \text{III}_{G, \text{ét}} := H_G^1(\widetilde{Y}^+, P).$$

Thus, we are reduced to proving finiteness of $\text{III}_{G, \text{ét}}$.

Proof: Step 4 (bounding the Tate–Shafarevich group)

$$\begin{array}{ccccc} X^+ & \xleftarrow{/G} & \widetilde{X}^+ & \xleftarrow{\text{loc}} & (\widetilde{X}^+)^{\text{Alb}} \\ \downarrow f^+ & & \downarrow \widetilde{f}^+ & & \searrow (\widetilde{f}^+)^{\text{Alb}} \\ Y^+ & \xleftarrow{/G} & \widetilde{Y}^+ & & \end{array}$$

Multiple fibers of $f : X \rightarrow Y$ in codimension 1 are encoded by a *multiplicity class* $m(f) \in H^0(Y^+, \mathcal{H}^1(G, P))$. If two fibrations f, f' with equal Albanese have $m(f) = m(f')$, then the difference between their birational classes is measured by the G -equivariant sheaf cohomology group

$$t(f) - t(f') \in \text{III}_{G, \text{ét}} := H_G^1(\widetilde{Y}^+, P).$$

Thus, we are reduced to proving finiteness of $\text{III}_{G, \text{ét}}$.

Proof: Step 4 (bounding the Tate–Shafarevich group)

We must analyze the diagram

$$\begin{array}{ccccccc} & & & & H^1_{G, \text{ét}}(\tilde{Y}^+, P^0) & & \\ & & & & \downarrow \text{analytification} & & \\ H^1_G(\tilde{Y}^+, \Gamma) & \longrightarrow & H^1_{G, \text{an}}(\tilde{Y}^+, \mathfrak{p}) & \longrightarrow & H^1_{G, \text{an}}(\tilde{Y}^+, P^0) & \longrightarrow & H^2_G(\tilde{Y}^+, \Gamma) \end{array}$$

coupled with a general theorem of Raynaud and basic group cohomology, that the upper group is torsion. [n.b. torsion \neq finite, cf. \mathbb{Q}/\mathbb{Z}]

We show the image of $H^1_G(\tilde{Y}^+, \Gamma_{\mathbb{C}}) \rightarrow H^1_{G, \text{an}}(\tilde{Y}^+, \mathfrak{p})$ receives a surjection from $H^2(X, \mathcal{O})$. Torsion-ness of $H^1_{G, \text{ét}}$ allows us to control the image of the analytification map.

Proof: Step 4 (bounding the Tate–Shafarevich group)

We must analyze the diagram

$$\begin{array}{ccccccc} & & H^1_{G, \text{ét}}(\tilde{Y}^+, P^0) & & & & \\ & & \downarrow \text{analytification} & & & & \\ H^1_G(\tilde{Y}^+, \Gamma) & \longrightarrow & H^1_{G, \text{an}}(\tilde{Y}^+, \mathfrak{p}) & \longrightarrow & H^1_{G, \text{an}}(\tilde{Y}^+, P^0) & \longrightarrow & H^2_G(\tilde{Y}^+, \Gamma) \end{array}$$

coupled with a general theorem of Raynaud and basic group cohomology, that the upper group is torsion. [n.b. torsion \neq finite, cf. \mathbb{Q}/\mathbb{Z}]

We show the image of $H^1_G(\tilde{Y}^+, \Gamma_{\mathbb{C}}) \rightarrow H^1_{G, \text{an}}(\tilde{Y}^+, \mathfrak{p})$ receives a surjection from $H^2(X, \mathcal{O})$. Torsion-ness of $H^1_{G, \text{ét}}$ allows us to control the image of the analytification map.

Philosophical point: Once we control the Tate–Shafarevich twist on a big open set $Y^+ \subset Y$, we can apply Hartogs' type results to prove that the analytification is injective.

This is far from true when $Y^+ \subset Y$ is not big.

Example

Consider an elliptic surface $S \rightarrow C$ and the result of logarithmic transforms $S' \rightarrow C$ at some points $p_i \in C$. These are biholomorphic over $C \setminus \{p_i\}$ but not bimeromorphic over any neighborhood of p_i .

Proof: Step 4 (bounding the Tate–Shafarevich group)

Philosophical point: Once we control the Tate–Shafarevich twist on a big open set $Y^+ \subset Y$, we can apply Hartogs' type results to prove that the analytification is injective.

This is far from true when $Y^+ \subset Y$ is not big.

Example

Consider an elliptic surface $S \rightarrow C$ and the result of logarithmic transforms $S' \rightarrow C$ at some points $p_i \in C$. These are biholomorphic over $C \setminus \{p_i\}$ but not bimeromorphic over any neighborhood of p_i .

Theorem (Toy Theorem)

Let X, X' be two projective varieties. A bimeromorphism $\varphi : U \dashrightarrow U'$ on big open sets $U \subset X, U' \subset X'$ extends to a bimeromorphism $X \dashrightarrow X'$.

Takeaway: Using such Hartogs'-type results, it suffices to understand Tate–Shafarevich twists over a big open subset $Y^+ \subset Y$ of the base.

Proof: Step 4 (bounding the Tate–Shafarevich group)

Theorem (E.-Filipazzi-Greer-Mauri-Svaldi)

If $f : X \rightarrow Y$ is an abelian fibration of a K -trivial variety, then so is $f^{\text{Alb}} : X^{\text{Alb}} \rightarrow Y$. Similarly, if f is Lagrangian fibration of a primitive symplectic variety, then so is f^{Alb} .

Question

Can we construct new deformation classes of symplectic varieties, by passing to the Albanese of a Lagrangian fibration with multiple fibers?

THANK YOU FOR YOUR TIME!

Proof: Step 4 (bounding the Tate–Shafarevich group)

Theorem (E.-Filipazzi-Greer-Mauri-Svaldi)

If $f : X \rightarrow Y$ is an abelian fibration of a K -trivial variety, then so is $f^{\text{Alb}} : X^{\text{Alb}} \rightarrow Y$. Similarly, if f is Lagrangian fibration of a primitive symplectic variety, then so is f^{Alb} .

Question

Can we construct new deformation classes of symplectic varieties, by passing to the Albanese of a Lagrangian fibration with multiple fibers?

THANK YOU FOR YOUR TIME!