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Introduction: Boundedness

Definition

A collection {Xi}i∈I of projective varieties is bounded if there exists a
family of projective varieties X → T , over a quasiprojective base T , such
that for all i ∈ I, there exists a t ∈ T for which Xi ≃ Xt.

Similar notions:

1 Birational boundedness

2 Bounded in codimension one

3 Boundedness of pairs

4 Analytic boundedness

5 ...
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Introduction: Boundedness

Question

Which classes of projective varieties are bounded?

Examples:

1 Subschemes of Pn with a fixed Hilbert polynomial

2 Smooth Fano varieties of a fixed dimension

3 K3 and abelian surfaces: Analytically bounded, but algebraically
unbounded (moduli of K3 surfaces F2d for any degree 2d > 0)

What about K-trivial varieties of higher dimension?
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Introduction: K-trivial varieties

Definition

A K-trivial variety is a normal projective variety X with canonical
singularities such that KX ∼ 0. We say that X is

(CY) Calabi-Yau if H0(X,Ω[k]) = 0 for all 0 < k < dimX ≥ 3;

(ICY) irreducible Calabi-Yau if all quasi-étale covers of X are CY;

(PS) primitive symplectic if H0(X,Ω[1]) = 0, H0(X,Ω[2]) = Cσ and σ is
symplectic on the smooth locus of X;

(IS) irreducible symplectic if all quasi-étale covers of X are PS;

(AV) an abelian variety if H0(X,Ω[1]) = dimX.

Theorem (Beauville-Bogomolov decomposition)

Every variety with numerically trivial canonical bundle and klt singularities
admits a quasi-étale cover which is a product of ICY varieties, IS varieties,
and an abelian variety.
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Introduction: K-trivial varieties

Example

Smooth hypersurfaces of degree d + 1 in Pd are irreducible Calabi-Yau
varieties.

Example (Alexeev)

Let G be a finite group acting on a lattice L and suppose LC is an
irreducible representation of G. Then, for any abelian surface A,

X ∶= G/L⊗A

is a primitive symplectic variety, but is not irreducible symplectic; X has a
quasi-étale cover by the abelian variety L⊗A ≃ A⊕rkL.
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Introduction: Motivating Question

Are Calabi-Yau varieties of a fixed dimension bounded? Are
K-trivial varieties of a fixed dimension analytically bounded?

This is a famous and very difficult problem; we don’t have techniques to
attack the general question.

Definition

A fibration f ∶X → Y is a surjective, proper morphism of normal varieties
with connected fibers and 0 < dimY < dimX.

If KX ∼ 0, by adjunction, the general fiber of f is also K-trivial.
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Main Results

Theorem ICY (E.-Filipazzi-Greer-Mauri-Svaldi)

1 Abelian-fibered irreducible Calabi-Yau varieties X, of a fixed
dimension, are birationally bounded.

2 Primitive symplectic-fibered irreducible Calabi-Yau varieties X, of a
fixed dimension and fibered in a fixed analytic deformation class, are
birationally bounded.

A corollary: fibered ICY 3-folds are bounded (here it is not hard to pass
from birational boundedness to boundedness).

Theorem PS (E.-Filipazzi-Greer-Mauri-Svaldi)

(Lagrangian-)fibered primitive symplectic varieties X, of a fixed dimension,
are analytically bounded.
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Main results: Some consequences

Conjecture (HyperKähler SYZ/Generalized Abundance)

Let X be a primitive symplectic variety of dimension 2d, which admits a
nontrivial nef line bundle L→X for which L2d = 0. Then X admits a
Lagrangian fibration.

By our second theorem:

Corollary

If the hyperKähler SYZ conjecture holds, there are only finitely many
analytic deformation classes of primitive symplectic variety X, of a fixed
dimension 2d, satisfying b2(X) ≥ 5.
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Canonical bundle formula

Let f ∶X → Y be a fibration in K-trivial varieties (with KX ∼f 0). The
base admits the structure of a generalized pair (Y,B,M). An effective
Q-divisor (the boundary divisor)

B ∶= ∑
P⊂Y prime

divisors

aPP

measures singularities of X over the codimension 1 points of Y , while the
moduli divisor

M ∶= c1(Hg,0)

is the class of the Q-line bundle formed from the (g,0)-part of the Hodge
structures on the fibers of f (g = the fiber dimension).

Theorem (Canonical bundle formula)

KX ∼ f∗(KY +B +M)
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Canonical bundle formula: Example

Let f ∶X → Y be a relatively minimal elliptic surface. Then

KX ∼ f∗(KY +B + j∗O( 1
12))

where j ∶ Y → P1 is the j-invariant, and B = ∑aPP and aP ∈ [0,1)
depends on the Kodaira type of the fiber:

f−1(P ) In(m) II III IV I∗n II∗ III∗ IV ∗

aP
m−1
m

1
6

1
4

1
3

1
2

5
6

3
4

2
3
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Proof: Key steps

We outline the proof of birational boundedness of abelian fibrations
f ∶X → Y of ICY varieties.

Step 1: Bound the integer c > 0 for which cM is b-free.

Step 2: Bound the possible bases (Y,B,M) in codimension 1.

Step 3: Bound (birationally) the Albanese fibration fAlb ∶XAlb → Y of any
f ∶X → Y inducing (Y,B,M).

Step 4: Bound the Tate–Shafarevich group, of abelian fibrations f ∶X → Y
with a fixed Albanese and which induce (Y,B,M).

See also: Gross, birationally bounding elliptic CY 3-folds.
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Proof: Step 1 (effective b-semiampleness)

Let f ∶X → Y be a fibration in K-trivial varieties. Then M is b-nef, and
conjecturally it is also b-semiample (“b-semiampleness conjecture” of
Prokhorov and Shokurov).

Relatedly, Laza conjectures that all moduli spaces M of K-trivial varieties
admit a “Baily-Borel” compactification M↪M on which the moduli
divisor λ of the universal family is ample.
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Proof: Step 1 (effective b-semiampleness)

For abelian and primitive symplectic varieties, the moduli space M= Γ/D
is locally Hermitian symmetric and the Baily-Borel compactification Γ/D
exists, by the Baily-Borel theorem.

Given an abelian (or primitive symplectic) fibration f ∶X → Y , there is an
induced period map

Φ ∶ Y ⇢ Γ/D.

Thus, cM, c > 0 is b-free once the universal moduli divisor cλ is free. The
issue: moduli spaces of abelian g-folds are not finite in number. For all
sequences d of integers d1 ∣ ⋯ ∣ dg we have a DM stack Ag,d of
d-polarized abelian g-folds.

Question: Why is c uniform for all d?
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Proof: Completion of Step 1 (effective b-semiampleness)

Answer: The “Zarhin trick.” All the Baily-Borel compactifications map
into a single moduli space

Ag,d → A8g

of PPAVs, and the Hodge bundle λ8g pulls back to 8λg on each Ag,d

(critically, independent of d).

Proof: The Zarhin trick sends Zar ∶ A↦ A⊕4 ⊕ (A∗)⊕4 and so

H8g,0(Zar(A)) ≃Hg,0(A)⊗8.

(For families of primitive symplectic varieties, we first apply the
Kuga-Satake construction, then we use the Zarhin trick.)
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Proof: Step 2 (bounding the base)

So in a fixed dimension, we bounded the integer c for which cM is b-free.
Birkar–di Cerbo–Svaldi imples the bases (Y,B,M) are bounded in
codimension 1, when Y is rationally connected.

When X is ICY, this is true. So there is a finite type family

(Y,B,M)→ T

which contain all possible bases (up to small modification) of an abelian
fibration f ∶X → Y of an ICY variety.
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Proof: Step 3 (bounding the Albanese fibration)

Our next goal (crucial): Bound the polarization type d of the fibers, then
the classifying morphism

Φ ∶ Y ⇢ Ag,d

y ↦ Aut0(Xy)

Warning: In general, f ∶X → Y is not the pullback of the universal family
Xg,d → Ag,d along the classifying morphism!! The stack Ag,d classifies
abelian varieties with a distinguished origin.

Given f ∶X → Y , we define a birational class of abelian fibration
fAlb ∶XAlb → Y whose fiber over y ∈ Y is the group of translations
Aut0(Xy)—this is the pullback of the universal family along Φ.

X is birational to XAlb iff X admits a rational section.
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Proof: Step 3, bounding the Albanese fibration

Again use Zarhin: By a volume argument, rational maps

Zar ○Φ ∶ Y ⇢ A8g

for which (Zar ○Φ)∗(λ8g) ≡M are bounded. So the space of all possible
“Zarhin-tricked” period maps (Y,Zar ○Φ) is bounded.

Question: Can we undo the Zarhin trick and in turn bound the
original period map Φ ∶ Y ⇢ Ag,d?
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Proof: Step 3 (bounding the Albanese fibration)

In general, no! For all A ∈ Ag,d we have a (very stupid) abelian fibration
A→ ∗. The Zarhin-tricked period maps ∗ → A8g lie in a bounded family.
But the original collection of maps is unbounded, since we may take d
arbitrary. To resolve this difficulty:

Lemma

If h2(X,O) = 0, the Zar ○Φ pullback of the universal Z16g-local system
on A8g to the smooth locus Y o ⊂ Y of f recovers a polarization type d.

Proof.

Deligne’s theorem of the fixed part.

(Note: This lemma holds for a Lagrangian fibration f ∶X → Y , which is
key to proving Theorem PS.)
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Proof: Step 3 (bounding the Albanese fibration)

Thus, we have bounded the polarization type d of a general fiber of
f ∶X → Y . Repeating the earlier volume argument, we bound the
classifying morphism

Φo ∶ Y o → Ag,d

and in turn the birational class of the Albanese fAlb ∶XAlb → Y .

(The role of the boundary divisor B is very subtle—it is critical to make a
distinction between the period map to the coarse space Y ⇢ Ag,d and the
classifying map to the DM stack Y o → Ag,d. Lifts from the coarse space
to the stack are controlled by the topology of the complement of suppB.)
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Proof: Step 4 (bounding the Tate–Shafarevich group)

This step is very technical (≈ 20-30 pages). Question: How to bound
f ∶X → Y from the data of fAlb ∶XAlb → Y ?

Set Y + ∶= the big open subset of Y reg where the discriminant of f is
smooth, divisorial. Find a finite Galois G-cover Ỹ + → Y + depending only
on (XAlb → Y,B,M) for which we have a key diagram:

X+

f+

��

X̃+
/Goo

f̃+

��

(X̃+)Alb//ét-locoo

(f̃+)Alb
{{

Y + Ỹ +

/G
oo

Here f̃+ ∶ X̃+ → Ỹ + is the normalized base change of the restriction
f+ ∶X+ → Y + and (f̃+)Alb is a G-equivariant Kulikov model of the
Albanese fibration of X̃+ → Ỹ +, to which f̃+ is étale-locally birational.
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Proof: Step 4 (bounding the Tate–Shafarevich group)

The sections of (f̃+)Alb form a group scheme P → Ỹ +.
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Proof: Step 4 (bounding the Tate–Shafarevich group)

Two important exact sequences: The component sequence

0→ P 0 → P → µ→ 0

where µ→ Ỹ + is the relative component group of the Kulikov model, and
the exponential exact sequence

0→ Γ→ p
expÐÐ→ P 0 → 0

associated to the sheaf p of Lie algebras of P . Note: Γ is a constructible
sheaf of finitely generated Z-modules.
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Proof: Step 4 (bounding the Tate–Shafarevich group)

X+

f+

��

X̃+
/Goo

f̃+

��

(X̃+)Alb//locoo

(f̃+)Alb
{{

Y + Ỹ +

/G
oo

Multiple fibers of f ∶X → Y in codimension 1 are encoded by a multiplicity
class m(f) ∈H0(Y +,H1(G,P )). If two fibrations f, f ′ with equal
Albanese have m(f) =m(f ′), then the difference between their birational
classes is measured by the G-equivariant sheaf cohomology group

t(f) − t(f ′) ∈XG, ét ∶=H1
G(Ỹ +, P ).

Thus, we are reduced to proving finiteness of XG, ét.
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Proof: Step 4 (bounding the Tate–Shafarevich group)

We must analyze the diagram

H1
G, ét(Ỹ +, P 0)

analytification

��
H1

G(Ỹ +,Γ) // H1
G,an(Ỹ +,p) // H1

G,an(Ỹ +, P 0) // H2
G(Ỹ +,Γ)

coupled with a general theorem of Raynaud and basic group cohomology,
that the upper group is torsion. [n.b. torsion ≠ finite, cf. Q/Z]

We show the image of H1
G(Ỹ +,ΓC) →H1

G,an(Ỹ +,p) receives a surjection

from H2(X,O). Torsion-ness of XG, ét allows us to control the image of
the analytification map.
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Proof: Step 4 (bounding the Tate–Shafarevich group)

Philosophical point: Once we control the Tate–Shafarevich twist on a big
open set Y + ⊂ Y , we can apply Hartogs’ type results to prove that the
analytification is injective.

This is far from true when Y + ⊂ Y is not big.

Example

Consider an elliptic surface S → C and the result of logarithmic transforms
S′ → C at some points pi ∈ C. These are biholomorphic over C ∖ {pi} but
not bimeromorphic over any neighborhood of pi.
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Proof: Step 4 (bounding the Tate–Shafarevich group)

Theorem (Toy Theorem)

Let X, X ′ be two projective varieties. A bimeromorphism ϕ ∶ U ⇢ U ′ on
big open sets U ⊂X, U ′ ⊂X ′ extends to a bimeromorphism X ⇢X ′.

Takeaway: Using such Hartogs’-type results, it suffices to understand
Tate–Shafarevich twists over a big open subset Y + ⊂ Y of the base.

Philip Engel Boundedness of abelian fibrations January 30, 2025 26 / 27



Proof: Step 4 (bounding the Tate–Shafarevich group)

Theorem (E.-Filipazzi-Greer-Mauri-Svaldi)

If f ∶X → Y is an abelian fibration of a K-trivial variety, then so is
fAlb ∶XAlb → Y . Similarly, if f is Lagrangian fibration of a primitive
symplectic variety, then so is fAlb.

Question

Can we construct new deformation classes of symplectic varieties, by
passing to the Albanese of a Lagrangian fibration with multiple fibers?

Thank you for your time!
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