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Local volumes

Let x ∈ (X ,∆) be a klt singularity of dimension n, and v be a real
valuation centered at x .

Definition (Ein–Lazarsfeld–Smith, 03)

The volume of v is

volX (v) = multX (a•(v)) = lim
λ→∞

length(OX ,x/aλ(v))

λn/n!

where aλ(v) = {h ∈ OX ,x : v(h) ≥ λ} is the graded sequence of
ideals (a.k.a., filtration) associated with v .



Local volumes

Definition (C. Li, 18)

The normalized volume of v is

v̂olX ,∆(v) = AX ,∆(v)
n · volX (v).

It is “normalized” to be invariant under scaling of v . The local
volume of x ∈ (X ,∆) is v̂ol(x ;X ,∆) = infv v̂olX ,∆(v).

Lemma (Y. Liu, 18)

v̂ol(x ;X ,∆) = inf
a•

lct(X ,∆; a•)
n ·mult(a•).

where a• ranges over mx -primary ideal filtrations of OX ,x .

Note that if vm is a minimizing valuation of v̂olX ,∆, then a•(v
m) is

a minimizing filtration.
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Stable degeneration

Theorem (conjectured by Li, 18; Li–Xu, 18)

(1) (Blum, 18) There exists a minimizer vm of the normalized vol-

ume function, that is, v̂ol(x ;X ,∆) = v̂olX ,∆(v
m).

(2) (Xu–Zhuang, 21) The minimizer vm is unique up to scaling.

(3) (Xu, 20) The minimizer vm is quasi-monomial.

(4) (Xu–Zhuang, 22) The graded ring R0 = grvm(OX ,x) is finitely
generated.

(5) (Li–Xu, 18) The induced degeneration (X0 = Spec(R0),∆0) is
a K-semistable log Fano cone singularity (in particular, the pair
(X0,∆0) is klt).
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Stable degneration in families

Let S be a semi-normal scheme (essentially of finite type over a
field of characteristic 0), and π : (X ,∆) → S be a locally stable
family of klt pairs, with a section x : S → X .

Theorem
Assume that the function s 7→ v̂ol(xs ;Xs ,∆s) is locally constant

on S. Let vms be the minimizer of v̂ol for xs ∈ (Xs ,∆s), scaled
such that AXs ,∆s (v

m
s ) = 1. Then there exist an ideal filtration a•

of OX such that the following hold:

(1) as,• = a•(v
m
s ) for all s ∈ S.

(2) aλ/a>λ is supported on x(S) and flat over S for all λ > 0.

(3) The induced degeneration (X0 = SpecS
⊕

λ aλ/a>λ,∆0) is a
locally stable family of K-semistable log Fano cone singularities.
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Stable degeneration in families

Remark (Blum–Liu, 21; Xu, 20)

The function s 7→ v̂ol(xs ;Xs ,∆s) is lower semi-continuous and
constructible on S .

Therefore, for a general family of klt singularities, there is a
stratification given by the local volumes, and the stable
degeneration in families holds on each stratum (after
semi-normalization).
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Constant local volume

In the following, assume that S is the spectrum of a DVR, with the
generic point η ∈ S , and the closed point s ∈ S . In this case, local
stability means (X ,∆+ Xs) is plt.

Let aη,• = a•(v
m
η ) ⊆ OXη . Since S is a DVR, we can extend aη,•

to a filtration a• ⊆ OX such that each OX/aλ is flat over S and
(set-theoretically) supported on the section x(S).
Then

length(OXη ,xη/aη,λ) = length(OXs ,xs/as,λ)

for all λ, so
mult(aη,•) = mult(as,•).
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Constant local volume

By the lower semi-continuity of log canonical thresholds,

lct(Xs ,∆s ; as,•) ≤ lct(Xη,∆η; aη,•).

Then
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Minimizing filtration

Theorem (Blum–Liu–Qi, 24)

A minimizing filtration is unique up to saturation and scaling.

That is, a•(v
m
s ) is the saturation of as,•.

This means that

(1) as,• ⊆ a•(v
m
s ),

(2) mult(as,•) = mult(a•(v
m
s )), and

(3) w(as,•) = w(a•(v
m
s )) for every real valuation w centered at

xs ∈ Xs with positive volume (in particular, divisorial and
quasi-monomial valuations).

However, we want as,• = a•(v
m
s ).
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Divisorial minimizer

Suppose vmη is divisorial, given by a divisor Eη over (Xη,∆η).

Then Eη is a Kollár component, and we have a plt blow-up

fη : (Yη,Eη) → (Xη,∆η).

In fact, we can extract the divisorial valuation corresponding to Eη

over (X ,∆), and extend the above blow-up to

f : (Y ,E ) → (X ,∆).

Using that lct(Xs ,∆s ; as,•) = lct(Xη,∆η; aη,•), we can get that

(Y , f −1
∗ ∆+ E + Ys)

is lc, that is, (Y , f −1
∗ ∆+ E ) → S is a locally stable family.
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Divisorial minimizer

Let E ′
s be a component of Es . Then

AXs ,∆s (E
′
s) = AXη ,∆η(Eη),

and
vol(ordE ′

s
) ≤ vol(ordEs ).

Since the family has constant local volume, we conclude that E ′
s

induces the minimizing valuation vms .

By the uniqueness, E ′
s = Es , and it is a Kollár components for

(Xs ,∆s).
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Divisorial minimizer

We get a locally stable family of Kollár components

f : (Y ,E ) → (X ,∆)

such that each fiber of E gives the minimizing valuation.

Then f∗OY (−λE ) commutes with base change, so they form an
ideal filtration with flat graded pieces, and coincide with the
filtration of minimizing valuation on each fiber. This is the desired
filtration in the Theorem.
Note that it coincide with a• (up to scaling).
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Higher rank

(1) Higher rank quasi-monomial minimizers lives on Kollár models
(or models of dlt Fano type):

f : (Y ,E = E1 + · · ·+ Er ) → (X ,∆)

where (Y , f −1
∗ ∆+ E ) is dlt and −(KY + f −1

∗ ∆+ E ) is ample,
such that vm ∈ QM(Y ,E ).

(2) We can choose a model f : (Yη,Eη) → (Xη,∆η) that extends
from the generic fiber using that a• has constant lct.

(3) But we need further modification (shrink the simplex
QM(Yη,Eη)) to conclude the closed fiber is also dlt, hence
get a locally stable family of Kollár models.
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